
Precise (Un)Affected Version Analysis for Web Vulnerabilities
Youkun Shi∗

Fudan University
China

19210240047@fudan.edu.cn

Yuan Zhang∗
Fudan University

China
yuanxzhang@fudan.edu.cn

Tianhan Luo
Fudan University

China
20210240280@fudan.edu.cn

Xiangyu Mao
Fudan University

China
17307130105@fudan.edu.cn

Min Yang
Fudan University

China
m_yang@fudan.edu.cn

ABSTRACT
Web applications are attractive attack targets given their popularity
and large number of vulnerabilities. To mitigate the threat of web
vulnerabilities, an important piece of information is their affected
versions. However, it is non-trivial to build accurate affected version
information because confirming a version as affected or unaffected
requires security expertise and huge efforts, while there are usually
hundreds of versions to examine. As a result, such information
is maintained in a low-quality manner in almost every public
vulnerability database. Therefore, it is extremely useful to have
a tool that can automatically and precisely examine a large part
(even if not all) of the software versions as affected or unaffected.

To this end, this paper proposes a vulnerability-centric approach
for precise (un)affected version analysis for web vulnerabilities. The
key idea is to extract the vulnerability logic from a patch and directly
use the vulnerability logic to check whether a version is (un)affected
or not. Compared with existing works, our vulnerability-centric
approach helps to tolerate the code changes across different
software versions. We construct a high-quality dataset with 34
CVEs and 299 software versions to evaluate our approach. The
results show that our approach achieves a precision of 98.15% and a
recall of 85.01% in identifying (un)affected versions and significantly
outperforms existing tools (e.g., V-SZZ, ReDebug, V0Finder).

CCS CONCEPTS
• Security and privacy → Web application security; Software
security engineering.

KEYWORDS
Web Vulnerability, Vulnerability Database, OSS Security
ACM Reference Format:
Youkun Shi, Yuan Zhang, Tianhan Luo, Xiangyu Mao, and Min Yang. 2022.
Precise (Un)Affected Version Analysis for Web Vulnerabilities. In 37th

∗co-first authors

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00
https://doi.org/10.1145/3551349.3556933

IEEE/ACM International Conference on Automated Software Engineering (ASE
’22), October 10–14, 2022, Rochester, MI, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3551349.3556933

1 INTRODUCTION
Web applications have a large user base. It is estimated that there
are over 1.7 billion websites worldwide, and this number is growing
at a rate of 576,000 per day [2]. Meanwhile, security vulnerabilities
are also widespread in web applications. According to the testing
of Acunetix on 3,500 random-selected websites, more than 90% of
web applications have high or medium severity vulnerabilities [4].
As a result, the fast-growing number of web applications attracts a
large volume of attacks. For example, a report from PatchStack [21]
shows that there are about 30,000 websites compromised every day.

Due to the rapid evolution, web applications often have hundreds
of versions. To protect web applications from security vulnerabili-
ties, an essential piece of information is the (un)affected versions of
a vulnerability. That is, only with accurate information about the
(un)affected versions of a vulnerability, the developers could know
which versions to release patches and the website maintainers could
know whether their used applications are affected.

Currently, to ease the process of vulnerability reporting and
managing, the affected versions of a vulnerability are maintained
by several public vulnerability databases [9, 10, 16]. For example,
NVD (National Vulnerability Database) [9] is the largest public
vulnerability database which indexes all the vulnerabilities in CVE
(Common Vulnerabilities and Exposures) [6] and provides the
affected versions of a vulnerability in a specific “Known Affected
Software Configurations” part of its page. However, since there
are a lot of versions for an application, it is extremely difficult to
examine all software versions by human experts. Taking NVD as an
example, it simply treats all the versions before the reported version
as affected [41, 45]. As a result, it is unsurprising to find that the
affected version information in almost every vulnerability database
has flaws [31, 54, 64, 67]. This calls for a precise (un)affected version
analysis tool, which could automatically identify a large part (even
if not all) of the software versions as affected or unaffected; thus,
at least the efforts in examining these versions could be saved.

An intuitive way to determine whether a version is affected
or unaffected is dynamic testing. That is to say, one can run the
PoC (Proof of Concept) input of a vulnerability on the version and
give a result by observing whether the vulnerability is triggered.
However, this method fails for two reasons. First, the PoC inputs
are not widely available due to their severe threats to the affected

https://doi.org/10.1145/3551349.3556933
https://doi.org/10.1145/3551349.3556933

ASE ’22, October 10–14, 2022, Rochester, MI, USA Youkun Shi, Yuan Zhang, Tianhan Luo, Xiangyu Mao, and Min Yang

applications [1, 3]. According to our experience in constructing
the dataset in §4.1, more than 60% of the vulnerabilities do not
have public PoC inputs. Second, due to the cross-version code
changes, the original PoC input sometimes needs to be adjusted
a little to trigger the same vulnerability on lower versions [30].
During our dataset construction in §4.1, we need to adjust 14.71%
of the collected PoCs to make them work on lower versions. For
these reasons, dynamic testing is not an appropriate choice.

Except for dynamic testing, another choice is static analysis. A
direct way is to statically analyze the code logic of every software
version to verify whether the vulnerability is there or not. However,
existing program analysis techniques are still not perfect and
meet severe limitations in reasoning complex code, e.g., constraint
solving [23, 59, 66, 69], path exploration [50, 68]. To facilitate
(un)affected version analysis, we find two lines of work in static
analysis that may help. The first line of work is the code clone
analysis [34, 37, 53, 61, 64, 65] which creates code signatures based
on the patch and identifies versions with similar code as affected.
The other line of work is the vulnerability-introducing commit
analysis [27, 33, 38, 41, 57] which uses the patch to locate the
introducing commit of the vulnerability and then identifies the
versions released between the introducing commit and the patch
commit as affected while marking other versions as unaffected.
However, we find that both lines of works could not provide precise
(un)affected version analysis. As it will be elaborated later in §2.1,
the root cause is concluded as the inappropriate patch assumption
problem, i.e., these works assume that a patch only contains
vulnerability-relevant changes and must have deletion lines. This
problem ultimately makes existing works hard to accommodate the
cross-version code changes, which is a fundamental challenge in
(un)affected version analysis.

In light of this, we propose a vulnerability-centric approach to
enable precise (un)affected version analysis. Similar to existing
works, our approach also takes the patch as input; however, it
significantly differs in the way of using the patch. Our high-
level idea is to first extract the vulnerability logic from the
patch and then perform the (un)affected version analysis based
on the vulnerability logic itself. The vulnerability-centric design
brings advantages two-fold. First, our analysis could be more
precise because we directly use the vulnerability logic in the
analysis, while existing works do not. Second, our analysis is
more resilient to cross-version code changes because vulnerability-
irrelevant codes are excluded from the analysis. Moreover, to avoid
complicated code reasoning, we adopt a conservative strategy
in (un)affected version analysis. To be specific, we only report
(un)affected versions with high confidence, even though we may
fail to give results for some versions. Nevertheless, according to our
evaluation, this strategy helps tomake the analysis quite precise and
meanwhile helps to identify a large part of versions as (un)affected.
Therefore, we believe our approach makes a first and important
step towards building accurate affected version information for
public vulnerability databases.

Our approach is named AFV (AFfected Versions) and a prototype
targeting PHP applications is implemented given the popularity
of the PHP language on the web. By constructing a ground-truth
dataset with 34 CVEs and 299 software versions (resulting 5,002
vulnerability-version pairs), AFV achieves a precision of 98.15% and

a recall of 85.01% in identifying affected and unaffected versions.
Compared with start-of-the-art works in vulnerability-introducing
commit analysis and code clone analysis (i.e., V-SZZ, ReDebug,
V0Finder), AFV significantly outperforms them in terms of both
precision and recall. Besides, AFV is very efficient. On average, it
costs 97.49 seconds to finish the analysis on one vulnerability-
version pair. The evaluation results demonstrate AFV as a useful
tool to precisely identify (un)affected versions of a vulnerability.

In summary, we make the following contributions in the paper:
• We propose a vulnerability-centric approach for (un)affected
version analysis and design several new techniques for represent-
ing, extracting, and using the vulnerability logic for (un)affected
version analysis.

• We construct a high-quality and large-scale dataset to measure
the effectiveness of (un)affected version analysis, in which the
affected versions are all confirmed with PoC inputs and the
unaffected versions are all confirmed manually.

• We implement a prototype of our approach and report its results
in our dataset, including the comparison results with several
state-of-the-art baselines.
The rest of this paper is organized as follows. §2 illustrates

the research problem and presents our key idea. §3 describes the
overall approach. §4 evaluates the proposed approach and compares
with several state-of-the-art works. §5 discusses some issues of the
work. §6 summarizes the related work and §7 concludes the paper.

2 MOTIVATION
2.1 Problem Statement
In this paper, we investigate the (un)affected version analysis
problem for web vulnerabilities. The problem can be formulated as
follows. A web application usually has a lot of versions (V0, V1, ..,
Vn). When a vulnerability is discovered on a specific version (i.e.,
the pre-patch version), it may also affect several other versions.
The (un)affected version analysis aims to assess which versions are
affected by the vulnerability and which versions are unaffected.

In essence, (un)affected version analysis is quite important. On
the one hand, the affected versions are the most fundamental
information in mitigating a vulnerability. Hence, we can find
such information is included in every vulnerability database, e.g.,
NVD [9], SecurifyFocus [16], and Openwall [10]. On the other hand,
the high importance of vulnerability-affected versions also requires
them to be highly accurate. However, prior works show that such
information is maintained in a low-quality manner [31, 41, 64].
Existing works also show that it is non-trivial for human experts to
examine whether a version is affected [43], due to the complicated
vulnerability logic reasoning. Therefore, a precise (un)affected
version analysis would significantly help to maintain a high-quality
vulnerability database by saving the efforts of security analysts.

A fundamental challenge in (un)affected version analysis is to
deal with the code changes across versions. In other words, a
precise (un)affected version analysis should keep resilient to the
code changes that are irrelevant to the vulnerability. However, we
find most of the existing works may fall short. We organize these
works into two categories and break down the reasons separately.

❶ Limitations of Code Clone Analysis. Vulnerability-affected
versions might be identified through code clone analysis, i.e., if

Precise (Un)Affected Version Analysis for Web Vulnerabilities ASE ’22, October 10–14, 2022, Rochester, MI, USA

a version of the software contains code whose similarity with the
vulnerable code exceeds a pre-defined threshold, it is identified as
affected. Among these works, a common way is to use function-
level code analysis to search vulnerable code clones [53, 61, 64].
Since the difference between the patched code and the vulnerable
code might be minor, recent works use the patch information
to optimize the vulnerable code clone analysis and achieve good
performance in detecting vulnerable code clones, e.g., ReDebug [34],
VUDDY [37] and MVP [65]. However, we find that these works can
not support precise (un)affected version analysis, because security
patches usually contain vulnerability-irrelevant code changes. For
example, according to our analysis in §4.1, 49.60% of patched
lines are irrelevant to the vulnerability logic. These vulnerability-
irrelevant code changes in a patch not only distract the analysis
from the vulnerability logic but also make the analysis hard to adapt
to cross-version code changes.

❷ Limitations of Vulnerability-introducing Commit Analysis.
Vulnerabilities are a kind of bugs. By locating the bug-introducing
commit, the versions that are released between the introducing
commit and the patch commit can be recognized as affected ones
while the others can be recognized as unaffected ones. Following
this philosophy, existing works use various ways to locate the
bug-introducing commit. Among these works, SZZ [57] and its
variants [27, 33, 38, 41] are well-known for their good performance.
V-SZZ [41] is a recent work that extends the SZZ algorithm to
adapt to the locating of the vulnerability-introducing commits. The
basic idea of V-SZZ is to backtrace the commit history to locate
the first commit in the code repository that introduces the deletion
lines of a security patch. However, we observe two limitations of
these works when performing (un)affected version analysis. First,
vulnerability-irrelevant patch modifications may bring the noise
in the tracing of cross-version code changes, thus degrading the
precision of locating vulnerability-introducing commits. Second,
the SZZ algorithm can not trace addition lines while according to
our analysis in §4.1, security patches may (i.e., 15.90%) contain pure
addition lines.

From the above analysis, we conclude that patches are widely
used by existing works; however, these works have an inappropriate
assumption about the patch: 1) the changes in a patch are relevant
to the vulnerability, and 2) a patch should have deletions. These
assumptions make them hard to tolerate the cross-version code
changes and fail to provide precise (un)affected version analysis.

2.2 Our Idea
Different from existingworks that directly use the patch in the cross-
version code analysis, we propose a vulnerability-centric approach.
The high-level idea is to extract the vulnerability logic from the
patch and use the vulnerability logic for (un)affected version
analysis. By keeping the analysis focused on the vulnerability logic
itself, our approach could be more resilient to cross-version code
changes and enable more precise (un)affected version analysis.

Following the high-level idea, we have two specific questions to
explore: ❶ how to represent the vulnerability logic and ❷ how to
use the vulnerability logic for (un)affected version identification.
• For the first question, we observe that there is usually a dangerous
function in a web vulnerability, and a patch fixes the vulnerability

by restricting the execution of the dangerous function either in
control flow (e.g., preventing attacker-controlled executions) or
in data flow (e.g, sanitizing attacker-controlled inputs). Thus, by
proposing an impact analysis on the patch, we could locate the
dangerous function. Then, the code that determines the behaviors
of the dangerous function represents the vulnerability logic.

• For the second question, we want to keep conservative in using
the vulnerability logic to identify (un)affected versions. That is to
say, we only report (un)affected versions that we are quite sure of.
Technically, we only identify a version as affected if it contains
a dangerous function with exactly the same vulnerability logic
and identifies a version as unaffected only when the dangerous
function is absent or patched. Note that we do not aim to identify
all the affected and unaffected versions, which require heavy-
weight vulnerable logic reasoning. Instead, we want to make the
first step to building accurate affected versions of a vulnerability
by providing a precise (un)affected version analysis.

2.3 Running Example
We use a real-world example to further illustrate our motiva-
tion. Figure 1 shows the patch for CVE-2018-15139, an arbitrary
file upload vulnerability reported in OpenEMR 5.1.0.3. The root
cause of the vulnerability is that the parameter ($imagepath) of
move_uploaded_file() (line 23) can be controlled by an attacker,
leading to the upload of an arbitrary PHP file. The vulnerability is
fixed by introducing checks on the extension of the uploaded files
(lines 11-14).

Obviously, it is a quite dangerous vulnerability that enables
remote code execution. To prevent the vulnerability from being
exploited, we first need to know which versions of OpenEMR
are affected. When referring to NVD, we find that there are
38 versions (i.e., 2.0.1.2 and 2.7-5.0.1.3) listed in the “Known
Affected Software Configuration” part [7]. However, by exam-
ining the code of all the versions of OpenEMR, we find that
13 versions (i.e., 2.7.2-3.2.0) that are referred to as affected in
NVD are actually unaffected. In fact, these unaffected versions
even do not have the source file that contains the vulnerability
(i.e., interface/super/manage_site_files.php). Such wrong
information about affected versions would mislead developers
and maintainers when mitigating vulnerabilities and make them
disregard the future information provided by the vulnerability
database.

We also use this vulnerability to illustrate how existing works
and our approach to perform the (un)affected version analysis.

❶ How existing code clone analysis fails? V0Finder [64] is a
function-level vulnerable code clone detector. It fails to find vulner-
able code clones for CVE-2018-15139 because the vulnerable code
(line 23) is not in a function. Besides, we find the patch of CVE-2018-
15139 contains a lot of vulnerability-irrelevant modifications, such
as functionality updates, and code refactoring. To be specific, the
patch modifies 17 files, and only 3 lines of the total 488 modification
lines are used to fix this vulnerability. As a result, our experiment
on ReDebug [34] (a patch-enhanced vulnerable code clone detector)
shows that it wrongly identifies 6 unaffected versions as affected
by using vulnerability-irrelevant patch modifications to search
vulnerable code. MVP [65] is a more recent tool in this line of work,

ASE ’22, October 10–14, 2022, Rochester, MI, USA Youkun Shi, Yuan Zhang, Tianhan Luo, Xiangyu Mao, and Min Yang

1
2
3
4
5
6
7
8
9

10
11
12

13
14
15
16
17
18
19
20
21
22
23
24
25

 $OE_SITE_DIR=dirname(dirname(__FILE__)).'/sites/'.$_SESSION['site_id'];
 $imagedir = "$OE_SITE_DIR/images";
 $form_dest_filename = $_POST['form_dest_filename'];
 if ($form_dest_filename == '') {
 $form_dest_filename = $_FILES['form_image']['name'];
 }
 $form_dest_filename = basename($form_dest_filename);
 if ($form_dest_filename == '') {
 die(htmlspecialchars(xl('Cannot find a destination filename')));
 }
+ $path_parts = pathinfo($form_dest_filename);
+ if(in_array(strtolower($path_parts['extension']),
 array('gif','jpg','jpe','jpeg','png','svg'))) {
+ die(xl('Only images files are accepted'));
+ }
 $imagepath = "$imagedir/$form_dest_filename";
 if (!is_dir($imagedir)) {
 mkdir($imagedir);
 }
 if (is_file($imagepath)) {
 unlink($imagepath);
 }
 $tmp_name = $_FILES['form_image']['tmp_name'];
 if(!move_uploaded_file($_FILES['form_image']['tmp_name'],$imagepath)){
 die(htmlspecialchars(xl('Unable to create') . " '$imagepath'"));
 }

Figure 1: The patch for CVE-2018-15139. Note: the lines with
blue number are patch-affected statements; the lines on light
yellow background represent vulnerability fingerprint.

but it is not open-source. Though we cannot conduct experiments
with MVP, our theoretical analysis shows that it also meets similar
problems due to vulnerability-irrelevant patch modifications.

❷ How existing vulnerability-introducing commit analysis fails?
V-SZZ [41] is recent work on locating the vulnerability-introducing
commit. When using V-SZZ [41] to locate the introducing commit
for this vulnerability, we find that it cannot locate the correct one.
Despite the issues about a large number of vulnerability-irrelevant
modifications in this patch, we can observe that this vulnerability
is fixed by adding new statements to check the extension of
the uploaded files (lines 11-14 in Figure 1). As a result, it is not
surprising to find that V-SZZ cannot locate the correct vulnerability-
introducing commit with these addition lines. Similar to V-SZZ,
other works on identifying bug-introducing commits [27, 33, 38]
would also fail due to the same reason.

❸ How our approach succeeds? To illustrate our vulnerability-
centric approach, here we give an overview of how it works on
this example and give more details in §3. First, we locate all the
affected statements by the patch (i.e., lines 15-17, 19-20, and 22-24)
and find that move_uploaded_file() (line 23) is a dangerous
function for file upload vulnerability, so it is identified as the
dangerous function for this vulnerability. Thereafter, we extract
all the code statements that affect the behaviors of this dangerous
function from both control dependencies and data dependencies
(i.e., lines 1-5, 7-8, 15-16, 19, and 23) and use them to represent
the vulnerability logic of this dangerous function. Finally, we use
these statements to check whether another version has the same
statements for the same dangerous function. If true, this version is
affected for having the same vulnerability logic. If this version has
no corresponding dangerous function or this version has been
patched, it is unaffected. Following this philosophy, we could

Patch
Commits
Collection

Vulnerability
Fingerprint
Generation (Un)Affected

Version
Identification

Patch
Commits

Unaffected

 Affected

VFpre-patch

VFtarget

Pre-patch
Versions

Repo

Target
Versions

Figure 2: The Architecture of AFV.

precisely identify the (un)affected versions for this vulnerability,
including finding its 13 incorrect affected versions in NVD.

3 DESIGN
Following the key idea in §2.2, we present AFV, an automated
approach for (un)affected version analysis on web vulnerabilities.
To ease the analysis, we first introduce a definition of vulnerability
fingerprint (§3.1) and then elaborate on the design of AFV. As shown
in Figure 2, AFV consists of three modules.
• Patch Commits Collection (§3.2) module takes reference patch
commits as input and collects other patch commits on different
branches in the code repository. This module helps to collect
more patch commits for (un)affected version identification.

• Vulnerability Fingerprint Generation (§3.3) module locates the
dangerous function in the pre-patch version and generates a
fingerprint for this dangerous function. Besides, this module also
generates fingerprints for dangerous functions in target versions
to support (un)affected version identification.

• (Un)Affected Version Identification (§3.4) module identifies af-
fected and unaffected versions with the help of the collected
patch commits and the generated vulnerability fingerprints.

3.1 Vulnerability Fingerprint Definition
The high-level idea of AFV is to check the presence of the vulnerabil-
ity logic on a target version. In the following, we first introduce the
concept of dangerous function and then use this concept to define
vulnerability fingerprint which represents the vulnerability logic.

Dangerous Function. Web vulnerabilities usually involve dan-
gerous functions. For example, the dangerous function for a SQL
Injection vulnerability might be mysql_query(), pg_query(), etc.
In fact, the root cause of web vulnerabilities is a kind of capability
leak of their corresponding dangerous functions. Through these
vulnerabilities, an attacker could gain the control of the dangerous
functions to achieve some advantages, e.g., controlling unlink()
to delete files, controlling move_uploaded_file() to upload files.
Thus, a dangerous function depicts the aim of an attacker in
exploiting a vulnerability.

Vulnerability Fingerprint. To check the dangerous function in a
target version is affected by a vulnerability or not, the vulnerability
fingerprint should accurately represent the code behaviors of
the dangerous function. Therefore, we define the vulnerability
fingerprint as a set of code statements that directly or indirectly
affect the execution of the dangerous function. More specifically, we
consider two kinds of statements in the vulnerability fingerprint: ❶

Precise (Un)Affected Version Analysis for Web Vulnerabilities ASE ’22, October 10–14, 2022, Rochester, MI, USA

the assignment statements that may change the parameters of the
dangerous function via data flows, and❷ the conditional statements
that determine the execution of the dangerous function from control
flows. Taking Figure 1 as an example, the dangerous function for
this vulnerability is move_uploaded_file(). Following the data
flows and control flows, we could determine the statements on lines
1-5, 7-8, 15-16, 19, and 23 as the vulnerability fingerprint. Though
there are 488 lines added/deleted in this patch, we could find only
3 lines is relevant to the vulnerability logic.

3.2 Patch Commits Collection
Patch commits serve as an important input in our approach. They
help to understand the vulnerability logic (see §3.3) and identify
patched versions (see §3.4). Considering that security patches are
usually developed at a code branch (e.g., the master branch) and
then backported to other code branches [55], the first step in AFV is
to collect the patch commits on other branches to find more kinds
of fixes to the same vulnerability.

By studying the practice of software development and patch
management, we observe that the backported patch commits and
the original patch commits have strong connections in several
dimensions. Thus, we devise a searching method to leverage such
connections to locate other patch commits in the Git repository. In
particular, given some reference patch commits, we collect more
patch commits using the following connections:

• Cherry-picked pattern. Developers can use “git cherry-pick”
to apply patches from one branch to another branch. In this
case, a sentence will be automatically inserted into the message
of the new commit, such as “cherry picked from commit
xxx” [41].

• Same code diff. If a commit on another branch has the same code
diff as a patch commit, it can be assumed to be a patch commit
for the same vulnerability.

• Same commit title and message.We observe that developers often
use the same title and message for the patch commits of the same
vulnerability on different branches.

Note that prior works also collect patch commits in the code
repository [41, 45, 62]. Compared with these works, our approach
leverages more ways to facilitate the patch commit collection. §4.5
also evaluates the usefulness of our patch collection module.

3.3 Vulnerability Fingerprint Generation
According to the definition of vulnerability fingerprint in §3.1, AFV
first locates the dangerous function of the vulnerability and then
extracts all the code statements that directly or indirectly affect the
execution of the dangerous function as the vulnerability fingerprint.

Locating the Dangerous Function. Web vulnerabilities are
usually caused by the capability leak of their corresponding
dangerous functions and are fixed by restricting the executions
of these dangerous functions from either control flows or data
flows. Thus, we first design a dependency analysis to locate all the
code statements that are affected by the patch and then identify
the dangerous function from these patch-affected code statements
with the help of a pre-defined dangerous function map.

Step 1: Locate Patch-affected Code Statements. We use forward
taint analysis to locate the statements affected by a patch. It runs
by iteratively propagating the following three types of statements:

• Assignment statement may affect the reaching condition/data-
flow values of a dangerous function.We taint its assigned variable
and locate all the statements that use this variable with a program
dependency analysis. They are all used for the taint analysis.

• Conditional statement may change the reaching condition of a
dangerous function, or its subsequent statements may affect a
dangerous function. We include all its subsequent statements for
the next round of taint analysis.

• Exit statement (e.g., die(), exit) is similar to a conditional state-
ment, which affects the execution of all subsequent statements.
Thus, we also use its subsequent statements for the taint analysis.

Step 2: Identify Dangerous Function.According to the root cause of
web vulnerabilities, we observe some common dangerous functions
for each type of web vulnerability. Thus, we could identify the
dangerous function from the patch-affected code statements with
the help of a pre-defined functionmap (see Table 1). Take Figure 1 as
an example, we identify line 15-17, 19-20 and 22-24 as patch-affected
statements. Since it is an arbitrary file upload vulnerability, we
can recognize line 23 (move_uploaded_file()) as the dangerous
function. Note that some dangerous functions may be customized
by developers. To handle these cases, we perform inter-procedure
analysis to locate the final dangerous functions. More specifically,
for the function calls in the patch-affected statements, AFV will
follow the call edges to further analyze the patch-affected code
statements in the callee functions. This step is executed iteratively
(with a threshold, e.g., 5 in our setting), until AFV locates the final
dangerous function in the patch-affected statements.

Generating Vulnerability Fingerprint. The vulnerability finger-
print is a set of code statements that directly or indirectly affect
the execution of the dangerous function. We combine several static
analysis techniques to extract these code statements.

• First, AFV performs backward taint analysis on the parameters of
the dangerous function to trace the source variables that affect
the values of the parameters.

• Second, AFV collects all the code statements that may be executed
between the source variables and the dangerous function with
forward control-flow analysis. Among these statements, AFV
checks each assignment statement and conditional statement
to determine whether it would affect the execution of the
dangerous function through program dependency analysis. All
such statements are extracted for further analysis.

• Finally, AFV normalizes the extracted statements by removing all
non-ASCII characters and whitespace characters (e.g., \𝑡 , \𝑛) and
converting all characters into the lower case. These statements
comprise the fingerprint of the dangerous function.

3.4 (Un)Affected Version Identification
AFV generates vulnerability fingerprints from all the patches. Based
on the collected patch commits and the generated vulnerability
fingerprints, AFV identifies affected and unaffected versions. With
the aim to aid the maintaining of the affected version information
of a vulnerability database, AFV adopts a conservative strategy

ASE ’22, October 10–14, 2022, Rochester, MI, USA Youkun Shi, Yuan Zhang, Tianhan Luo, Xiangyu Mao, and Min Yang

Table 1: Dangerous Functions for Some Vulnerability Types.

Vulnerability Type Dangerous Function

Server-Side XSS echo, print, print_r

SQL Injection
pg_query, pg_send_query, pg_prepare,
mysql_query, mysqli_prepare, mysqli_query,
mysqli_real_query

Arbitrary File Manipulation
include, include_once, require, require_once,
file_put_contents, fopen, fwrite, file, readfile,
unlink, rmdir

Command Injection exec, passthru, proc_open, system, shell_exec,
popen, pcntl_exec

Code Injection eval, create_function, assert, array_map

Executable File Upload copy, fopen, move_uploaded_file, rename

Open Redirect header

PHP Object Injection unserialize

in identifying (un)affected versions. More specifically, AFV favors
precision than recall because we expect the versions identified
by AFV (either affected or unaffected ones) do not require further
manual efforts in confirmation. Technically, there are three steps
in identifying the (un)affected versions:

• First, AFV checks whether the target versions are patched by
analyzing the commit history of the code repository. If the version
is the parent of any patch commit, it is patched and deemed as
unaffected.

• Second, AFV locates the dangerous function in the target version.
If no corresponding dangerous function is located, this version
is identified as unaffected.

• Third, AFV generates a fingerprint of the dangerous function
(𝑉𝐹𝑡𝑎𝑟𝑔𝑒𝑡) on the target version and compares it with the
vulnerability fingerprint (𝑉𝐹𝑝𝑟𝑒−𝑝𝑎𝑡𝑐ℎ). If𝑉𝐹𝑡𝑎𝑟𝑔𝑒𝑡 is exactly the
same with 𝑉𝐹𝑝𝑟𝑒−𝑝𝑎𝑡𝑐ℎ , this version is deemed as affected.

Note that some versions may still not be labeled after the above
three steps; they are deemed as unknown. The benefits of AFV reflect
in helping human experts to avoid examining a large part of versions
(aka those identified versions).

4 EVALUATION
4.1 Experimental Setup
Prototype. We implemented a prototype of AFV targeting PHP
applications, which consists of 4,268 lines of Python code. The
Patched Commit Collection module is built upon the GitPython
library; the Vulnerability Fingerprint Generation and (Un)Affected
Version Identification modules are based on the PHPJoern static
analysis framework [26]. Besides, we also enhanced PHPJoern to
support inter-procedure analysis and virtual call resolving with a
class hierarchy analysis and optimized its Code Property Graph
construction by supporting several new PHP syntaxes, e.g., switch
statements. By thoroughly examining the PHP manual [12] and
other resources [5, 8, 11], we collected a representative list of
dangerous PHP functions for common vulnerability types in Table 1.
Note that modelling dangerous functions in PHP program analysis
tasks [25, 26, 47, 63] is quite common.

Experiments. Our evaluation is organized by answering the
following research questions:
• RQ1: How effective is AFV in identifying the affected and
unaffected versions for a given vulnerability?

• RQ2: How effective is AFV when compared with some related
approaches?

• RQ3: How efficient is AFV in performing the analysis?
• RQ4: How does the patch commit collection module perform?

Dataset. Our evaluation requires a vulnerability dataset with
labeled (un)affected status on various versions of the related
software. Since there is no public dataset of this kind for PHP
web applications, we have to construct a new dataset. The most
challenging part in constructing such a dataset is the labeling of the
(un)affected status of a vulnerability on various software versions.
Meanwhile, the quality of such information is very important to
measuring a tool like AFV. To this end, we have two requirements
to guarantee the quality of labeling the (un)affected information:
1) to label an affected version, we require a PoC to trigger the
vulnerability; and 2) to label an unaffected version, we require to
manually confirm that the dangerous function is absent, patched
or can not be triggered.

In addition to the two requirements, the dataset should be
representative, and the manual efforts in constructing the dataset
should be reduced as much as possible. Therefore, we further set
four guidelines in dataset construction: 1) the collected vulnera-
bilities should cover various common types of web application
vulnerabilities; 2) the collected applications should have a certain
number of versions (e.g., more than 100 versions) and popular ones
are preferred (e.g., more than 1,000 GitHub stars); 3) there should
be public PoC inputs and patches for the collected vulnerabilities
to aid the (un)affected version labeling; and 4) we should keep the
number of applications as small as possible because we have to set
up plenty of versions of them for PoC testing.

Following the above guidelines, we collected 26 CVEs from
MantisBT1 and 8 CVEs from Piwigo2 to construct the vulnerability
dataset. The collected CVEs have covered all the vulnerability types
in Table 1. Furthermore, for all the 34 CVEs, the developers have
published detailed vulnerability information, including the PoC
inputs and the patches, which greatly eases the understanding of
the vulnerability logic and the labeling of the (un)affected versions.
Then, we wrote a crawler to automatically collect 146 versions of
MantisBT and 161 versions of Piwigo from GitHub and used them
as the application dataset. To guarantee the quality of labeling the
(un)affected versions of the vulnerability dataset, three authors
have been involved, each of whom has at least 4 years of expertise
in web security. The whole process costs over 650 human hours. To
be specific, the analysts follow the following process to label the
ground-truth dataset:
• First, we manually set up each version of the application in a
docker container with the guidance of the official documentation.
In all, we successfully set up 145 versions of MantisBT and 154
versions of Piwigo, while there are 8 versions that failed to be
built because their dependent MySQL version is too old to be

1MantisBT is a popular bug tracking system and has more than 1,400 stars in GitHub.
2Piwigo is a photo management system with more than 1,700 stars in GitHub.

Precise (Un)Affected Version Analysis for Web Vulnerabilities ASE ’22, October 10–14, 2022, Rochester, MI, USA

supported or their released source code miss some important files
(e.g., the installation files). This step costs us about 100 human
hours.

• Second, for each vulnerability, two analysts independently
analyzed its vulnerability logic (e.g., the dangerous function,
the triggering condition, and the path of the vulnerability)
with the help of the PoC input and Xdebug [22]. Based on
the vulnerability logic, the analysts determined the hosting
files for the vulnerability (i.e., the files hosting the dangerous
functions). When the two analysts have different opinions, a third
analyst would be involved to reach a consensus. After that, we
wrote a script to automatically identify the versions that do not
have the hosting files of the vulnerability, among all the 5,002
(i.e., 145*26+154*8) vulnerability-version pairs. In all, 860 such
versions have been identified and are deemed as unaffected. This
step takes about 150 human hours.

• Third, we tried to identify the versions that applied the patches.
To be specific, two analysts independently analyzed the given
security patch(es) to identify the patch-affected files and the
patching logic and then tried to locate the patch commits for
each application version by tracing the commit history of these
files in GitHub and checking the commit code modifications.
If the two analysts have located different patch commits for a
version, a third analyst would participate. Some scripts have been
developed to facilitate the process. In this way, 2,179 patched
versions have been identified from the left set (4,142) and are
deemed them as unaffected. This step takes about 70 human
hours.

• Forth, PoC testing is used on the remaining 1,963 versions to
observe whether the vulnerability is triggered at the dangerous
function. Note that for those versions where the original PoC
cannot trigger the vulnerability, the analysts tried to adjust the
PoC unless they could confirm that the vulnerability logic does
not exist or cannot be triggered. In particular, 1,405 versions have
been verified as affected with the original PoC, 78 versions have
been verified as affected with a modified PoC and the remaining
480 versions are verified as unaffected. Since PoC testing and
adjustment is quite time-consuming, this step costs about 330
human hours.

In all, the ground-truth dataset covers 34 CVEs and 299 software
versions, resulting 5,002 vulnerability-version pairs. Among these
pairs, 1,483 cases are labeled as affected and the left 3,519 cases are
labeled as unaffected.

For the 34 CVEs, we manually collected 44 patches3 in the NVD.
Among all these patches, we find 7 patches (15.9%) that contain
pure insertions. In all, these patches have 1,277 addition lines and
489 deletion lines, covering the modification to 80 files. Based on
the analysis of Vulnerability Fingerprint Generationmodule, we find
876 lines (49.60%) are irrelevant to the vulnerability fixing. These
statistics confirm our argument about the “inappropriate patch
assumption” problem that is met by existing works.

Baselines. We compare AFV with the following two lines of works.

3Some CVEs have multiple patch commits in the NVD for two reasons: i) the
vulnerability is fixed by multiple commits; ii) the vulnerability is fixed by separated
commits on different branches. For the former case, the multiple commits are merged
and viewed as a single patch in our evaluation.

Table 2: Effectiveness Results of AFV. (RQ1)

Ground Truth Tool’s Result

TP FP1 FN2 Precision Recall

Affected 1,483 1,034 35 449 96.73% 69.72%
Unaffected 3,519 3,218 45 301 98.62% 91.45%

All 5,002 4,252 80 750 98.15% 85.01%
1The false positives in AFV represent the versions that have been given results (either
affected or unaffected), but the results are wrong.
2The false negatives in AFV consist of the versions that have been incorrectly
identified as affected or unaffected, and the versions that have not been successfully
identified (i.e., identified as unknown).

• Vulnerability-introducing Commit Analysis. As described in §2.1,
this line of research assesses vulnerability-(un)affected versions
by locating the vulnerability-introducing commit. In this line
of work, V-SZZ [41] is the state-of-the-art which improves
the original SZZ algorithm [57] and outperforms the original
SZZ including its variants (e.g., B-SZZ [33], AG-SZZ [38],
MA-SZZ [27]). Besides, the source code of V-SZZ is publicly
available [18]. Thus, V-SZZ is selected to compare with our tool.

• Code Clone Analysis. V0Finder [64] is a recent function-level
code clone detector that is used to discover the first version
where a vulnerability is introduced. Its source code has been
released [19], so it is used as a baseline. Besides, existing works
also use patch information to optimize vulnerable code clone
analysis, e.g., MVP [65], VUDDY [37] and ReDebug [34]. In
this direction, MVP is a recent work; however, it is not open-
source. VUDDY only supports the C language. Fortunately,
ReDebug is open-source [14] and language-independent, so it
is included in our comparison experiment. As analyzed in §2.1,
MVP and VUDDY also meet the same limitations as ReDebug in
(un)affected versions analysis.

Environment. The experiments are run on a Ubuntu 18.04machine
with an Intel Xeon Gold 6242 processor and 245 GB memory. All
the baselines are configured with the same setting as their papers.

4.2 Effectiveness (RQ1)
In this experiment, we use the whole ground-truth dataset to
evaluate the effectiveness of AFV in identifying affected and
unaffected versions. The detailed results are shown in Table 2.
In all, AFV reports 1,069 affected versions and 3,263 unaffected
versions while 1,034 and 3,218 of them are true positives. That
means the affected version analysis and the unaffected version
analysis achieves a precision of 96.73% and 98.62%, respectively.
When combining the results on affected and unaffected version
identification, the overall precision is 98.15%. Besides, the overall
recall is also high, i.e., 85.01%. The evaluation results demonstrate
that AFV can significantly save the manual efforts of examining a
large part of software versions. Next, we break down the detailed
reasons for the false positives and false negatives.

False Positive Analysis. Though AFV adopts a conservative
strategy in identifying affected versions (i.e., finding exactly the
same vulnerability fingerprint in the target version), it still reports
35 false positives in affected version analysis. By analyzing all

ASE ’22, October 10–14, 2022, Rochester, MI, USA Youkun Shi, Yuan Zhang, Tianhan Luo, Xiangyu Mao, and Min Yang

these FPs, we find that they are caused by the same reason: the
entry for the vulnerability-triggering request does not exist, but the
vulnerability logic remains the same. More specifically, we observe
that web applications usually use routing rules/configurations for
request dispatching, while in these cases there is no dispatching
for the vulnerability-triggering requests though the dangerous
functions and the vulnerable logic are the same as the pre-patch
versions. Since AFV has not taken such rules or configurations into
the analysis scope, these versions are marked as unaffected in the
ground truth but are identified as affected by AFV, leading to false
positives. One possible way for AFV to eliminate such FPs is to
take a PoC as input and learn the complete vulnerability triggering
condition from the PoC [55, 56].

To guarantee the precision in identifying unaffected versions,
AFV only reports a version as unaffectedwhen the version is patched,
or there is no corresponding dangerous function in this version.
However, from Table 2, we find that AFV still reports 45 false
positives in the unaffected version analysis. We have analyzed all
these cases and find they are all caused by one reason: the dangerous
functions of these vulnerabilities have been changed to other functions
with similar functionalities. For example, the dangerous function
for CVE-2011-3578 in MantisBT 1.2.7 is echo(), but in MantisBT
1.2.0a2, it is changed to print(). Thus, these versions are indeed
affected but are wrongly identified as unaffected by AFV.

False Negative Analysis. There are 750 false negatives that have
not been successfully or correctly identified as affected or unaffected
by AFV. In these versions, 80 versions are incorrectly identified as
affected or unaffected by AFV (aka the 80 FPs which have been
analyzed above), and the left 670 versions are identified as unknown
by AFV (see the descriptions in §3.4).

Among these 670 versions, 404 versions are true affected
versions and the other 266 versions are true unaffected versions.
For the 266 unaffected versions that have been identified as
unknown by AFV, we find that each of them has the corresponding
dangerous function whose fingerprint is not exactly the same with
𝑉𝐹𝑝𝑟𝑒−𝑝𝑎𝑡𝑐ℎ . Identifying these dangerous functions as unaffected
requires complicated reasoning about their code logic [23, 59, 66, 69].
For the 404 affected versions that have been identified as unknown
by AFV, we find there are two situations:

• Semantically-equivalent vulnerability fingerprint (299 versions).
For a version in this category, though its vulnerability fingerprint
is not exactly the same with 𝑉𝐹𝑝𝑟𝑒−𝑝𝑎𝑡𝑐ℎ , they are equivalent in
semantics. For example, the explode() function in a fingerprint
is changed to split() in another fingerprint. To identify these
vulnerability fingerprints as the same, some more advanced code
equivalence testing techniques [42, 44, 51] would help.

• Different vulnerability fingerprints (105 versions). The affected
versions in this category have different vulnerability fingerprints
from those of the pre-patched versions, but they can be triggered
with the same PoC input. Identifying these versions as affected
also requires complicated reasoning about the code logic of their
dangerous functions [23, 59, 66, 69].

4.3 Comparison (RQ2)
We compare AFV with different groups of baselines.

Table 3: Comparison Results with V-SZZ. (RQ2)

Ground Truth Tools Tool’s Results

TP FP FN Precision Recall

Affected 1,483
AFV 1,034 35 449 96.73% 69.72%

V-SZZ 962 1,191 521 44.68% 64.87%
V-SZZ++1 962 585 521 62.18% 64.87%

Unaffected 3,519
AFV 3,218 45 301 98.62% 91.45%

V-SZZ 2,328 521 1,191 81.71% 66.16%
V-SZZ++ 2,934 521 585 84.92% 83.38%

All 5,002
AFV 4,252 80 750 98.15% 85.01%

V-SZZ 3,290 1,712 1,712 65.77% 65.77%
V-SZZ++ 3,896 1,106 1,106 77.89% 77.89%

1V-SZZ++ is an enhanced version of V-SZZ and will be used in RQ4 (§4.5).

4.3.1 Comparison with V-SZZ. Similar to AFV, V-SZZ can identify
both affected and unaffected versions. Thus, we run the comparison
experiments on the whole ground truth.

V-SZZ Setup. V-SZZ has provided detailed documentation in
the README.md [18]. Following these guidelines, we run V-SZZ
within three steps. First, we use the official patch commit as input
and execute “python main.py”, so that V-SZZ can collect the
vulnerability-introducing commits and the patch commits in the
code repository. Second, based on the collected commits, we run
“python extract_tag.py” to make V-SZZ identify the affected
versions. Third, according to the description in the V-SZZ paper [41],
all the remaining versions are marked as unaffected.

Results Overview. The comparison results between V-SZZ and
AFV are presented in Table 3. Note that V-SZZ identifies affected
versions first and then labels all the remaining versions as unaf-
fected, so its FPs/FNs in affected version analysis correspond to the
FNs/FPs in unaffected version analysis, respectively. From this table,
we can find that AFV achieves superior performance than V-SZZ in
both the precision and the recall. To be specific, AFV outperforms
V-SZZ by 49.22% in precision and 29.25% in recall. This clearly
demonstrates the advantages of AFV in considering the vulnerability
logic other than the patch modifications in performing vulnerability
affection analysis. Furthermore, it is surprising to find that the
performance of V-SZZ is quite worse than that reported in its paper.
We rigorously investigate the reasons by various means, such as
studying the paper, examining the source code, and communicating
our findings with the authors of V-SZZ. Eventually, we conclude
several major reasons that cause V-SZZ to have many false positives
and false negatives in our evaluation. We present these reasons in
the following.

FPs in Affected Version Analysis. In general, we find two
major limitations in V-SZZ that lead to false positives/negatives in
identifying affected/unaffected versions.
• Vulnerability-irrelevant modifications in the patch (282 FPs).V-SZZ
locates the vulnerability-introducing commit by backtracing the
patch modifications, so vulnerability-irrelevant modifications in
a patch may cause V-SZZ to locate a vulnerability-introducing
commit earlier than the real one. In this scenario, V-SZZ would
report false positives in identifying affected versions. We observe
282 FPs for this reason.

Precise (Un)Affected Version Analysis for Web Vulnerabilities ASE ’22, October 10–14, 2022, Rochester, MI, USA

• Fail to collect some backported patch commits (909 FPs). V-
SZZ identifies the versions released between the vulnerability-
introducing commit and the patch commit as affected and marks
the others as unaffected. Hence, if it fails to identify some patch
commits, it would wrongly identify some patched versions as
affected. We observe 909 FPs due to this reason.

FNs in Affected Version Analysis.We summarize two reasons
that cause V-SZZ to report false negatives/positives in identifying
affected/unaffected versions.

• Cannot handle patches with pure addition lines (413 FNs). V-SZZ
uses the deletion lines in a patch to trace the origin commits that
introduce these lines and identifies the vulnerability-introducing
commit from these origin commits. However, we find 7 patches
only contain addition lines. It makes V-SZZ fail to locate the
vulnerability-introducing commits for them, causing 413 false
negatives in identifying affected versions. In §2.2, we conclude
this problem as the “inappropriate patch assumption”. In contrast,
AFV does not have such assumptions.

• Identify wrong vulnerability-introducing commits (108 FNs). Dur-
ing the tracing of the introducing commit of a deletion line, V-
SZZ relies on line-level code similarity to determine whether an
addition line and a deletion line belong to the same line. However,
sometimes V-SZZ may fail to identify them as the same line due
to the significant code changes between them, thus breaking the
tracing of the deletion line. In this situation, V-SZZwould locate a
vulnerability-introducing commit later than the real one, causing
false negatives in identifying affected versions. We observe 108
FNs for this reason.

4.3.2 Comparison with ReDebug & V0Finder. Different from AFV,
ReDebug and V0Finder can only identify vulnerability-affected
versions. Thus, we compare AFV with them in identifying the
affected versions of the ground truth.

ReDebug Setup. We run ReDebug with two steps. First, we
get a patch diff file from GitHub. Second, we use ReDebug to
test whether a software version is affected using this command:
“python redebug.py <patch> <target>”.

V0Finder Setup. There are three steps. First, we use the patch com-
mit(s) as input and run “python3 CVEPatch_Collector.py”
for V0Finder to generate vulnerable function signatures. Second,
we run “python3 OSS_Collector.py“ for V0Finder to generate
signatures for all the functions in our application dataset. Third,
we use the command “python3 DetectingVulClones.py” to
make V0Finder identify vulnerability-affected versions. Note that
Universal Ctags [17] is used by V0Finder to extract some function-
level information for signature generation, while it currently does
not support PHP files. Therefore, we extend V0Finder to support
the parsing of PHP files with the help of the PHP-Parser [13] library.

Results Overview. Table 4 shows the comparison results with
ReDebug and V0Finder. Similarly, we observe that AFV significantly
outperforms both tools. Compared with ReDebug, AFV significantly
improves both the precision and recall in identifying affected
versions. Though V0Finder achieves a comparable precision with
AFV, its recall is quite low. To understand the reasons for the bad

Table 4: Comparison Results with ReDebug and V0Finder in
Identifying Affected Versions. (RQ2)

Tools TP FP FN Precision Recall

AFV 1,034 35 449 96.73% 69.72%
ReDebug 871 146 612 85.64% 58.73%
V0Finder 239 20 1,244 92.28% 16.12%

performance of these two tools, we manually analyze their false
positives and false negatives. The causes are summarized below.

FPs and FNs in ReDebug. There are three reasons for the
inaccuracies of ReDebug.

• The vulnerability logic exists but can not be triggered (9 FPs). Similar
to the FPs in AFV, ReDebug reports 9 FP versions where the logic
of the dangerous function is vulnerable but can not be triggered
due to the absence of the vulnerability entry.

• Vulnerability-irrelevant modifications in the patch (137 FPs). Due
to the lack of understanding of the vulnerability logic, ReDebug
might use vulnerability-irrelevant modifications in the patch
to identify similar vulnerable codes. In all, it causes 137 false
positives. In contrast, AFV does not have such FPs thanks to
the Vulnerability Fingerprint Generation module, which excludes
vulnerability-irrelevant code from the analysis scope.

• Patch-centric vulnerable code searching (612 FNs). ReDebug identi-
fies vulnerable code clones using the code lines nearby the patch.
However, these nearby lines do not represent the vulnerability
logic. Thus, when there are significant code changes, ReDebug
might fail to identify the vulnerability logic of an affected version.
We find ReDebug fails to identify 612 affected versions due to
this reason. In contrast, AFV extracts the logic of a vulnerability
into a fingerprint and directly uses the fingerprint to identify
affected versions, avoiding a lot of false negatives.

FPs and FNs in V0Finder. Compared with ReDebug, V0Finder
also has similar reasons for the false positives. First, it also reports
false positives for the 9 versions where the dangerous function
is vulnerable but can not be triggered due to the absent entry
(9 FPs). Second, due to vulnerability-irrelevant modifications in
a patch, V0Finder wrongly identifies vulnerable functions. Using
these functions in the subsequent affected version analysis reports
incorrect affected versions (11 FPs). On the other side, we find
that the major reason for the false negatives in V0Finder is that
the patches for 21 CVEs do not modify a function (i.e., the code
modifications occur outside the functions). Thus, these patches are
beyond the scope of V0Finder (causing 982 FNs). For the remaining
262 FNs, they are caused by including vulnerability-irrelevant code
in the function-level code similarity analysis. It makes V0Finder
fail to identify affected versions when significant code changes
occur. Compared with V0Finder, AFV does not report so many false
negatives due to its vulnerability-centric design, which does not rely
on function-level code analysis and does not consider vulnerability-
irrelevant code in the analysis.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Youkun Shi, Yuan Zhang, Tianhan Luo, Xiangyu Mao, and Min Yang

Table 5: Efficiency Results of AFV (in seconds). (RQ3)

AFV Module Average Medium

Patch Commits Collection 287.27 249.59
Vulnerability Fingerprint Generation 13,424.94 2,355.00
Vulnerability (Un)Affection Analsysis 631.22 488.15

Total 14,343.43 3,313.27

4.4 Efficiency (RQ3)
We evaluate the efficiency of AFV on the whole dataset. Table 5
presents the results. On average, identifying (un)affected versions
of a vulnerability requires to analyze 147.12 (i.e., 5,002/34) software
versions and costs 14,343.43 seconds. That is, AFV averagely costs
97.49 seconds to analyze a vulnerability-version pair. Since program
analysis is used by AFV to generate vulnerability fingerprints, it
spends more time to finish the analysis than ReDebug, V0Finder,
and V-SZZ. However, though these tools are lightweight, their
analysis is quite imprecise. Considering that AFV is mostly used as
an offline tool, we believe precision is more favored than efficiency
and its efficiency is quite acceptable.

4.5 Patch Commits Collection (RQ4)
Both AFV and V-SZZ collect patch commits in the code repository
before identifying affected/unaffected versions. As described in §3.2,
AFV uses more ways than V-SZZ in patch commits collection. In this
experiment, we report the results of their collected patch commits
and the impact on the final analysis results.

Given the manually-collected 44 patches, V-SZZ further locates
17 new patch commits by using the cherry-picked pattern and the
code diff information. In addition to the ways used by V-SZZ, AFV
also uses the commit title and message information, which helps
to locate the backported patch commits that are not created using
“git cherry-pick” nor “git merge”. In all, AFV locates 25 new
patch commits. It helps AFV to identify 2,179 patched versions while
V-SZZ can only identify 1,573 patched versions. Note that all the
new patches collected by AFV and V-SZZ are found to be correct.

To measure the impact of patch commits collection on the
final analysis results, we incorporate our patch commits collection
technique into V-SZZ and name the enhanced variant as V-SZZ++.
We also compare AFV with V-SZZ++. The results are presented
in Table 3. We find that our patch commits collection technique
significantly improves the accuracy of V-SZZ++, while V-SZZ++
still reports more incorrect affected/unaffected versions than AFV.

5 DISCUSSION
Threats to Validity. ❶ The validity of the constructed dataset in
the evaluation might bring threats to the results. As described
in §4.1, we have devised several mechanisms to mitigate the
constructed threat. First, we set two requirements to mitigate the
threat of labeling the (un)affected versions: (1) all the affected
versions are verified with PoCs, and (2) all the unaffected versions
are manually confirmed. Besides, our labeling process has involved
three security analysts. They worked together to ensure the quality
of the ground truth. As described in §4.1, before the labeling, all the
analysts studied the root cause of every vulnerability in the dataset

including its patch semantics with the help of the PoC inputs and
Xdebug. Meanwhile, every labeled version has been checked by
two analysts, and a third analyst would be involved if they cannot
reach an agreement. Second, we set four guidelines for selecting the
web applications and their vulnerabilities into the dataset. All the
selected applications are quite popular, and all the vulnerabilities
are selected from public vulnerability databases. Besides, all the
versions of the selected applications in GitHub are included in the
dataset.

❷ The scale of the dataset might also bring threats to validity. In
all, the dataset consists of 5,002 vulnerability-version pairs, covering
34 vulnerabilities and 299 versions. Among all the vulnerability-
version pairs, there are 1,483 affected cases and 3,519 unaffected
cases. We think the scale of the dataset is representative.

❸ The adoption of existing tools might bring threats to the
comparison results. As described in §4.3, both V-SZZ and ReDebug
can be directly applied to PHP code and we have followed their
guidelines [14, 18] in the comparison experiment. For V0Finder, it
uses Universal Ctags [17] to extract function-level information for
signature generation, but the tool does not support PHP code. Thus,
we leverage the PHP-Parser [13] library to make V0Finder support
parsing PHP files. Note that V0Finder just needs the function
name and its corresponding start and end line numbers to collect
function-level information, while such information can be directly
acquired by PHP-Parser with built-in APIs. Therefore, we believe
our adaption of V0Finder does not hurt its original performance.

Trade-off between Precision and Recall. Accurate affected
versions of a vulnerability are an important piece of information
in vulnerability management. However, due to the diverse code
changes across versions, building affected versions of a vulnerability
usually meets a trade-off between precision and recall. Previous
work [45] chooses to report as many affected versions as possible,
which sacrifices precision for recall. However, the imprecision of
such information may not only waste the time of webmasters in
fixing unaffected versions of a vulnerability but also make them
disregard the future provided information. Different from previous
works, we adopt a different philosophy. First, we not only identify
affected versions but also identify unaffected versions. Second, we
only report affected/unaffected versionswith high confidence, while
keeping the left versions as unknown ones. The advantage of such
design is that it brings a clear boundary between the reliable labeled
versions and those that need further investigation. In short, our
conservative design trades recall for precision. Fortunately, our
proposed approach also achieves a high recall of 85.01%.

Further Improvement. The evaluation results in §4.2 show
that AFV achieves a high precision (98.15%) and recall (85.01%).
The precision of AFV can be further improved. First, the FPs in
identifying affected versions can be mitigated with the help of the
PoC analysis to understand the complete vulnerability triggering
condition. Second, the FPs in identifying unaffected versions can be
eliminated by identifying those dangerous functions with similar
functionalities as the same. With the aim to be precise, AFV reports
more FNs than FPs. According to the analysis in §4.2, avoiding these
FNs require heavyweight program analysis techniques to reason
the code logic of the dangerous functions and perform semantic-
level code equivalence testing. The contribution of our work is to

Precise (Un)Affected Version Analysis for Web Vulnerabilities ASE ’22, October 10–14, 2022, Rochester, MI, USA

make the first step in providing a lightweight and precise analysis
to identify a large part of (un)affected versions while leaving the
rest of versions as the future work. Considering that there are a
lot of versions to examine, we believe this step is important and
necessary.

Generalization. Though the prototype of AFV is implemented for
PHP web applications, the overall approach is generally applicable
to web applications of other languages. First, the Patch Commits
Collection module is based on code commit search; thus it is
language-independent. Second, to support a new programming
language, the Vulnerability Fingerprint Generation module and the
(Un)Affected Version Identification module could be implemented
with another static analysis framework for the new language. For
example, to make AFV support Java web applications, Soot [60] or
Wala [20] can be used to implement these two modules. That said,
adapting these two modules for a new programming language
requires considerable engineering efforts. To be specific, one
should re-implement several analysis tasks on top of the new
static analysis framework, e.g., forward taint analysis to locate
the dangerous function, and backward taint analysis to trace the
source variables that affect the dangerous function. Besides, as a
vulnerability-centric approach for (un)affection version analysis,
the whole analysis of AFV is built upon the dangerous function
of a vulnerability. Therefore, our approach supports various ap-
plication types and vulnerability types, but it does not support
applications/vulnerabilities that do not have dangerous functions.

6 RELATEDWORK
(Un)Affected Version Analysis. The information about the
affected versions of a vulnerability is quite important. To this
end, existing works have explored both static analysis [41] and
dynamic testing [30] techniques. Dai et al. [30] proposed a PoC
migration approach that takes a PoC as input and migrates the
PoC to verify other affected versions. However, according to our
experience of collecting the PoC inputs for web vulnerabilities
in §4.1, more than 60% of the vulnerabilities do not have public
PoC inputs. Therefore, this approach is inappropriate for web
vulnerabilities. V-SZZ [41] takes a patch as input and backtraces the
deletion lines of the patch across the code commit history to locate
the vulnerability-introducing commit. Based on the vulnerability-
introducing commit, all the versions released between it and
the patch commit can be identified as affected. However, V-SZZ
cannot locate the vulnerability-introducing commit for a patch
with pure addition lines and its performance degrades significantly
when there are vulnerability-irrelevant modifications in the patch.
Compared with V-SZZ, our vulnerability-centric approach does not
have such limitations and achieves superior performance.

Vulnerable Code Clone Detection. Many approaches have been
proposed to detect vulnerable code clones [34, 37, 39, 40, 65]. Woo
et al. [64] attempted to locate the origin of a vulnerability by
introducing a function-level vulnerable code clone analysis. Jang et
al. [34] proposed ReDeBug to search unpatched code clones in the
code base of an operating system. Xiao et al. [65] generated patch-
enhanced vulnerability signatures to accurately detect vulnerable
and unpatched code clones.

It can be found that these works commonly use patches to
identify vulnerable code and search for vulnerable code clones.
To some extent, AFV is similar to these works for also using patches
to analyze the vulnerability. However, AFV significantly differs
from existing works in the way of using the patch. Technically,
our approach tries to understand the logic of a vulnerability
from its patch by locating its dangerous function and extracting
the vulnerability logic. This design helps AFV to exclude the
vulnerability-irrelevant patchmodifications from the analysis scope,
thus being more resilient to cross-version code changes than
existing works.

Vulnerability Detection. (Un)Affected version analysis of a
vulnerability is used after the detection of the vulnerability. There
is a lot of work in detecting web vulnerabilities. A commonly used
technique is static analysis [26, 28, 29, 35, 46, 58], but it bears high
false positives due to the lack of PoCs. As a dynamic analysis
technique, fuzzing [32, 48, 49, 52] has become quite popular recently.
Its advantage is that it can generate PoCs, and its disadvantage is
the code coverage. Compared with static and dynamic analysis,
hybrid analysis [24, 25, 36] might be a more preferable approach by
combining both advantages of them. However, none of these works
can be directly used to determine whether a version is affected or
unaffected by a specific vulnerability.

7 CONCLUSION
This paper proposes AFV, a vulnerability-centric approach for
precise (un)affected version analysis for web vulnerabilities. The
high-level idea is to understand the vulnerability logic with the
help of the patch and use the vulnerability logic to check whether
a version is (un)affected or not. Since only the vulnerability logic
is used in the analysis, AFV is more resilient to cross-version code
changes than existing works, which is a fundamental challenge
in (un)affected version analysis. To conduct a representative
evaluation, a high-quality large-scale dataset is constructed, in
which the affected versions are all confirmed with PoC inputs, and
the unaffected versions are all confirmed manually. The results
demonstrate AFV as a useful tool in automatically and precisely
examining a large part of the software versions as (un)affected. The
dataset and the source code are publicly available [15].

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful comments.
This work was supported in part by the National Natural Science
Foundation of China (U1836210, U1836213, 62172105, 61972099,
62172104, 62102091, 62102093), the National Key R&D Program of
China (2021YFB3101200), and the Natural Science Foundation of
Shanghai (19ZR1404800). Yuan Zhang was supported in part by
the Shanghai Rising-Star Program 21QA1400700 and the Shanghai
Pilot Program for Basic Research-Fudan University 21TQ1400100
(21TQ012). Min Yang is the corresponding author, and a faculty of
Shanghai Institute of Intelligent Electronics & Systems, Shanghai
Institute for Advanced Communication and Data Science, and
Engineering Research Center of Cyber Security Auditing and
Monitoring, Ministry of Education, China.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Youkun Shi, Yuan Zhang, Tianhan Luo, Xiangyu Mao, and Min Yang

REFERENCES
[1] 2020. PoC Exploits DoMore Good Than Harm: Threatpost Poll. https://threatpost.

com/poc-exploits-do-more-good-than-harm-threatpost-poll/152053/.
[2] 2021. How Many Websites Are There in 2021? https://websitesetup.org/news/

how-many-websites-are-there/.
[3] 2021. Is It OK to Publish PoC Exploits for Vulnerabilities and Patches? https:

//www.helpnetsecurity.com/2021/05/05/publishing-poc-exploits/.
[4] 2021. The Invicti AppSec Indicator Spring 2021 Edition: Acunetix Web

Vulnerability Report. https://www.acunetix.com/white-papers/acunetix-
web-application-vulnerability-report-2021/#another-victim-of-covid-19-web-
application-security.

[5] 2022. Acunetix: PHP Security. https://www.acunetix.com/websitesecurity/php-
security-1/.

[6] 2022. Common Vulnerabilities and Exposures. https://cve.mitre.org/.
[7] 2022. CVE-2018-15139 in NVD. https://nvd.nist.gov/vuln/detail/CVE-2018-

15139.
[8] 2022. How to Secure PHP Web Applications and Prevent Attacks? https://docs.

php.earth/security/intro/.
[9] 2022. National Vulnerability Database. https://nvd.nist.gov/.
[10] 2022. Openwall. http://www.openwall.com/.
[11] 2022. OWASP Community. https://owasp.org/www-community/.
[12] 2022. PHP Manual. https://www.php.net/manual/zh/index.php.
[13] 2022. PHP-Parser Source Code. https://github.com/nikic/PHP-Parser.
[14] 2022. ReDebug Source Code. https://github.com/dbrumley/redebug.
[15] 2022. Release of AFV. https://github.com/seclab-fudan/AFV.
[16] 2022. Securityfocus. https://www.securityfocus.com/vulnerabilities.
[17] 2022. Universal Ctags Source Code. https://github.com/universal-ctags/ctags.
[18] 2022. V-SZZ Source Code. https://figshare.com/ndownloader/files/31748777.
[19] 2022. V0Finder Source Code. https://github.com/WOOSEUNGHOON/V0Finder-

public.
[20] 2022. Wala: The T. J. Watson Libraries for Analysis. http://wala.sourceforge.net.
[21] 2022. Website Hacking Statistics You Should Know.
[22] 2022. Xdebug. http://xdebug.org/.
[23] Giovanni Agosta, Alessandro Barenghi, Antonio Parata, and Gerardo Pelosi. 2012.

Automated Security Analysis of Dynamic Web Applications through Symbolic
Code Execution. In Proceedings of the 9th International Conference on Information
Technology New Generations (ITNG). 189–194.

[24] Abeer Alhuzali, Birhanu Eshete, Rigel Gjomemo, and VN Venkatakrishnan.
2016. Chainsaw: Chained Automated Workflow-based Exploit Generation. In
Proceedings of the 23rd ACM SIGSAC Conference on Computer and Communications
Security (CCS). 641–652.

[25] Abeer Alhuzali, Rigel Gjomemo, Birhanu Eshete, and VN Venkatakrishnan. 2018.
NAVEX: Precise and Scalable Exploit Generation for Dynamic Web Applications.
In Proceedings of the 27th USENIX Security Symposium (USENIX Security). 377–
392.

[26] Michael Backes, Konrad Rieck, Malte Skoruppa, Ben Stock, and Fabian Yamaguchi.
2017. Efficient and Flexible Discovery of PHP Application Vulnerabilities.
In Proceedings of the 2nd IEEE European Symposium on Security and Privacy
(EuroS&P). 334–349.

[27] Daniel Costa, Shane McIntosh, Weiyi Shang, Uirá Kulesza, Roberta Coelho, and
Ahmed E. Hassan. 2016. A Framework for Evaluating the Results of the SZZ
Approach for Identifying Bug-Introducing Changes. IEEE Transactions on Software
Engineering (TSE) (10 2016), 1–1.

[28] Johannes Dahse and Thorsten Holz. 2014. Simulation of Built-in PHP Features
for Precise Static Code Analysis. In Proceedings of the 21st ISOC Network and
Distributed System Security Symposium (NDSS). 23–26.

[29] Johannes Dahse and Thorsten Holz. 2014. Static Detection of Second-Order
Vulnerabilities in Web Applications. In Proceedings of the 23rd USENIX Security
Symposium (USENIX Security). 989–1003.

[30] Jiarun Dai, Yuan Zhang, Hailong Xu, Haiming Lyu, ZichengWu, Xinyu Xing, and
Min Yang. 2021. Facilitating Vulnerability Assessment through PoC Migration. In
Proceedings of the 28th ACM SIGSAC Conference on Computer and Communications
Security (CCS).

[31] Ying Dong, Wenbo Guo, Yueqi Chen, Xinyu Xing, Yuqing Zhang, and GangWang.
2019. Towards the Detection of Inconsistencies in Public Security Vulnerability
Reports. In Proceeding of the 28th USENIX Security Symposium (USENIX Security).
869–885.

[32] Adam Doupé, Ludovico Cavedon, Christopher Kruegel, and Giovanni Vigna.
2012. Enemy of the State: A State-Aware Black-Box Web Vulnerability Scanner.
In Proceeding of the 21st USENIX Security Symposium (USENIX Security). 523–538.

[33] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin
Monperrus. 2014. Fine-Grained and Accurate Source Code Differencing. In
Proceedings of the 29th ACM/IEEE International Conference on Automated Software
Engineering (ASE). 313–324.

[34] Jiyong Jang, Abeer Agrawal, and David Brumley. 2012. ReDeBug: Finding
Unpatched Uode Clones in Entire OS Distributions. In Proceedings of the 33rd
IEEE Symposium on Security and Privacy (S&P). 48–62.

[35] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. 2006. Pixy: A Static
Analysis Tool for Detecting Web Application Vulnerabilities. In Proceedings of
the 27th IEEE Symposium on Security and Privacy (S&P). 6 pp.–263.

[36] Soheil Khodayari and Giancarlo Pellegrino. 2021. JAW: Studying Client-side
CSRF with Hybrid Property Graphs and Declarative Traversals. In Proceedings of
the 30th USENIX Security Symposium (USENIX Security). 2525–2542.

[37] Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo Oh. 2017. VUDDY: A
Scalable Approach for Vulnerable Code Clone Discovery. In Proceedings of the
38th IEEE Symposium on Security and Privacy (S&P).

[38] Sunghun Kim, Thomas Zimmermann, Kai Pan, and E. Jr. 2006. Automatic
Identification of Bug-Introducing Changes. In Proceedings of the 21th ACM/IEEE
International Conference on Automated Software Engineering (ASE).

[39] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Hanchao Qi, and Jie Hu. 2016.
VulPecker: An Automated Vulnerability Detection System based on Code
Similarity Analysis. In Proceedings of the 32nd Annual Conference on Computer
Security Applications. 201–213.

[40] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun
Deng, and Yuyi Zhong. 2018. VulDeePecker: A Deep Learning-based System For
Vulnerability Detection. In Proceedings of the 25th ISOC Network and Distributed
System Security Symposium (NDSS).

[41] Ahmed E. Hassan Lingfeng Bao, Xin Xia and Xiaohu Yang. 2022. V-SZZ:
Automatic Identification of Version Ranges Affected by CVE Vulnerabilities. In
Proceedings of the 44th ACM/IEEE International Conference on Software Engineering
(ICSE).

[42] M.tech.Scholar. 2016. To Enhance Type 4 Clone Detection in Clone Testing.
International Journal of Computer Science and Information Technologies (IJCSIT)
(2016).

[43] Dongliang Mu, Alejandro Cuevas, Limin Yang, Hang Hu, Xinyu Xing, Bing Mao,
and Gang Wang. 2018. Understanding the Reproducibility of Crowd-Reported
Security vulnerabilities. In Proceeding of the 27th USENIX Security Symposium
(USENIX Security). 919–936.

[44] Hamid Nasirloo and Fatemeh Azimzadeh. 2018. Semantic Code Clone Detection
using Abstract Memory States and Program Dependency Graphs. In Proceedings
of the 4th International Conference on Web Research (ICWR). 19–27.

[45] Viet Hung Nguyen, Stanislav Dashevskyi, and Fabio Massacci. 2016. An
Automatic Method for Assessing the Versions Affected by a Vulnerability.
Empirical Software Engineering 21, 6 (2016), 2268–2297.

[46] Benjamin Nielsen, Behnaz Hassanshahi, and François Gauthier. 2019. Nodest:
Feedback-driven Static Analysis of Node.js Applications. In Proceedings of the
27th Joint Meeting on Foundations of Software Engineering (FSE).

[47] Sunnyeo Park, Daejun Kim, Suman Jana, and Sooel Son. 2022. FUGIO: Automatic
Exploit Generation for PHP Object Injection Vulnerabilities. In Proceeding of the
31st USENIX Security Symposium (USENIX Security).

[48] Giancarlo Pellegrino, Martin Johns, Simon Koch, Michael Backes, and Christian
Rossow. 2017. Deemon: Detecting CSRF with Dynamic Analysis and Property
Graphs. In Proceedings of the 24th ACM SIGSAC Conference on Computer and
Communications Security (CCS).

[49] Giancarlo Pellegrino, Constantin Tschürtz, Eric Bodden, and Christian Rossow.
2015. jÄk: Using Dynamic Analysis to Crawl and Test Modern Web Applications.
In Proceedings of the 18th International Symposium on Research in Attacks,
Intrusions and Defenses (RAID). 295–316.

[50] Dawei Qi, Hoang DT Nguyen, and Abhik Roychoudhury. 2013. Path Exploration
Based on Symbolic Output. ACM Transactions on Software Engineering and
Methodology (TOSEM) 22, 4 (2013), 1–41.

[51] R. Bhatia R. Tekchandani and M. Singh. 2018. Semantic Code Clone Detection for
Internet of Things Applications using Reaching Definition and Liveness Analysis.
The Journal of Supercomputing 74, 9 (2018), 4199–4226.

[52] Orpheas van Rooij, Marcos Antonios Charalambous, Demetris Kaizer, Michalis
Papaevripides, and Elias Athanasopoulos. 2021. WebFuzz: Grey-Box Fuzzing for
Web Applications. In Proceedings of the 26th European Symposium on Research in
Computer Security (ESORICS). 152–172.

[53] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K Roy, and Cristina V
Lopes. 2016. SourcererCC: Scaling Code Clone Detection to Big-Code. In
Proceedings of the 38th International Conference on Software Engineering (ICSE).
1157–1168.

[54] Luis Alberto Benthin Sanguino and Rafael Uetz. 2017. Software Vulnerability
Analysis using CPE and CVE. arXiv preprint arXiv:1705.05347 (2017).

[55] Ridwan Shariffdeen, Xiang Gao, Gregory Duck, Shin Hwei Tan, Julia Lawall, and
Abhik Roychoudhury. 2021. Automated Patch Backporting in Linux (Experience
Paper). In Proceedings of the 30th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA). 633–645.

[56] Ridwan Salihin Shariffdeen, Shin Hwei Tan, Mingyuan Gao, and Abhik
Roychoudhury. 2021. Automated Patch Transplantation. ACM Transactions
on Software Engineering and Methodology (TOSEM) 30, 1 (2021).

[57] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. 2005. When Do
Changes Induce Fixes? ACM SIGSOFT Software Engineering Notes (SEN) 30, 4
(2005), 1–5.

https://threatpost.com/poc-exploits-do-more-good-than-harm-threatpost-poll/152053/
https://threatpost.com/poc-exploits-do-more-good-than-harm-threatpost-poll/152053/
https://websitesetup.org/news/how-many-websites-are-there/
https://websitesetup.org/news/how-many-websites-are-there/
https://www.helpnetsecurity.com/2021/05/05/publishing-poc-exploits/
https://www.helpnetsecurity.com/2021/05/05/publishing-poc-exploits/
https://www.acunetix.com/white-papers/acunetix-web-application-vulnerability-report-2021/#another-victim-of-covid-19-web-application-security
https://www.acunetix.com/white-papers/acunetix-web-application-vulnerability-report-2021/#another-victim-of-covid-19-web-application-security
https://www.acunetix.com/white-papers/acunetix-web-application-vulnerability-report-2021/#another-victim-of-covid-19-web-application-security
https://www.acunetix.com/websitesecurity/php-security-1/
https://www.acunetix.com/websitesecurity/php-security-1/
https://cve.mitre.org/
https://nvd.nist.gov/vuln/detail/CVE-2018-15139
https://nvd.nist.gov/vuln/detail/CVE-2018-15139
https://docs.php.earth/security/intro/
https://docs.php.earth/security/intro/
https://nvd.nist.gov/
http://www.openwall.com/
https://owasp.org/www-community/
https://www.php.net/manual/zh/index.php
https://github.com/nikic/PHP-Parser
https://github.com/dbrumley/redebug
https://github.com/seclab-fudan/AFV
https://www.securityfocus.com/vulnerabilities
https://github.com/universal-ctags/ctags
https://figshare.com/ndownloader/files/31748777
https://github.com/WOOSEUNGHOON/V0Finder-public
https://github.com/WOOSEUNGHOON/V0Finder-public
http://wala.sourceforge.net
http://xdebug.org/

Precise (Un)Affected Version Analysis for Web Vulnerabilities ASE ’22, October 10–14, 2022, Rochester, MI, USA

[58] Fangqi Sun, Liang Xu, and Zhendong Su. 2011. Static Detection of Access Control
Vulnerabilities in Web Applications.. In Proceeding of the 20th USENIX Security
Symposium (USENIX Security), Vol. 64.

[59] Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar. 2014. S3: A Symbolic String
Solver for Vulnerability Detection in Web Applications. In Proceedings of the
21st ACM SIGSAC Conference on Computer and Communications Security (CCS).
1232–1243.

[60] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam,
and Vijay Sundaresan. 1999. Soot: A Java Bytecode Optimization Framework.
In Proceedings of the 9th Conference of the Centre for Advanced Studies on
Collaborative Research (CASCON). 214–224.

[61] Pengcheng Wang, Jeffrey Svajlenko, Yanzhao Wu, Yun Xu, and Chanchal K Roy.
2018. CCAligner: A Token Based Large-Gap Clone Detector. In Proceedings of
the 40th International Conference on Software Engineering (ICSE). 1066–1077.

[62] Xinda Wang, Shu Wang, Pengbin Feng, Kun Sun, and Sushil Jajodia. 2021.
PatchDB: A Large-Scale Security Patch Dataset. In Proceedings of the 51st Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
149–160.

[63] Seongil Wi, Sijae Woo, Joyce Jiyoung Whang, and Sooel Son. 2022. HiddenCPG:
Large-Scale Vulnerable Clone Detection Using Subgraph Isomorphism of Code
Property Graphs. In Proceedings of the 31st ACM Web Conference(WWW). 755–
766.

[64] Seunghoon Woo, Dongwook Lee, Sunghan Park, Heejo Lee, and Sven Dietrich.
2021. V0Finder: Discovering the Correct Origin of Publicly Reported Software
Vulnerabilities. In Proceedings of the 30th USENIX Security Symposium (USENIX
Security). 3041–3058.

[65] Yang Xiao, Bihuan Chen, Chendong Yu, Zhengzi Xu, Zimu Yuan, Feng Li,
Binghong Liu, Yang Liu, Wei Huo, and Wei Zou. 2020. MVP: Detecting
Vulnerabilities using Patch-Enhanced Vulnerability Signatures. In Proceedings of
the 29th USENIX Security Symposium (USENIX Security). 1165–1182.

[66] Fang Yu, Muath Alkhalaf, Tevfik Bultan, and Oscar H Ibarra. 2014. Automata-
Based Symbolic String Analysis for Vulnerability Detection. Formal Methods in
System Design 44, 1 (2014), 44–70.

[67] Su Zhang, Xinming Ou, and Doina Caragea. 2020. Automated CPE Labeling
of CVE Summaries with Machine Learning. In Proceeding of 20th International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA).

[68] Yunhui Zheng and Xiangyu Zhang. 2013. Path Sensitive Static Analysis of Web
Applications for Remote Code Execution Vulnerability Detection. In Proceedings
of the 35th International Conference on Software Engineering (ICSE). 652–661.

[69] Yunhui Zheng, Xiangyu Zhang, and Vijay Ganesh. 2013. Z3-str: A Z3-Based
String Solver for Web Application Analysis. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering (FSE). 114–124.

	Abstract
	1 Introduction
	2 Motivation
	2.1 Problem Statement
	2.2 Our Idea
	2.3 Running Example

	3 Design
	3.1 Vulnerability Fingerprint Definition
	3.2 Patch Commits Collection
	3.3 Vulnerability Fingerprint Generation
	3.4 (Un)Affected Version Identification

	4 Evaluation
	4.1 Experimental Setup
	4.2 Effectiveness (RQ1)
	4.3 Comparison (RQ2)
	4.4 Efficiency (RQ3)
	4.5 Patch Commits Collection (RQ4)

	5 Discussion
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

