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Abstract—Microservice architecture has been becoming in-
creasingly popular for building scalable and maintainable
applications. A microservice-structured web application (short-
ened to microservice application) enhances security by provid-
ing a loose-coupling design and enforcing the security isolation
between different microservices. However, in this paper, our
study shows microservice applications still suffer from taint-
style vulnerability, one of the most serious vulnerabilities. We
propose a novel security analysis approach, named MScan,
that can effectively detect taint-style vulnerabilities in real-
world evolving-fast microservice applications. Our approach
mainly consists of three phases. First, MScan identifies the
entry points accessible to external malicious users by applying
a gateway-centric analysis. Second, MScan utilizes a new
data structure, i.e. service dependence graph, to bridge inter-
service communication. Finally, MScan employs a distance-
guided strategy for selective context-sensitive taint analysis to
detect vulnerabilities. By applying MScan on 25 open-source
microservice applications and 5 industrial microservice appli-
cations from a world-leading fintech company, we found MScan
can effectively vet these applications with the discovery of 59
high-risk 0-day vulnerabilities. We have conducted responsible
vulnerability disclosure. Up to now, 31 CVE identifiers have
been issued.

1. Introduction

Microservice architecture has recently become increas-
ingly popular in the web area, for its technical benefits of
building scalable and maintainable web applications [21,
22]. It differs from traditional monolithic architecture, which
faces difficulties in handling modern evolving-fast web ap-
plications. Instead, microservice architecture significantly
improves scalability, simplifies updates and maintenance,
and facilitates continuous release and deployment capabili-
ties. Many giant companies, like Uber [10], X/Twitter [9],
and Amazon [8], have embraced microservice designs to
build their sophisticated web platforms.

From the perspective of system security, a microservice
application enables improved fault and security isolation.
It fosters the creation and integrity of independent services
(i.e. microservice components) that run in separate processes
and communicate through lightweight mechanisms. Such
a loose-coupling and isolation design helps maintain clear

boundaries and shrink the attack surface compared to mono-
lithic applications, where modules might share resources and
have more direct access to each other.

As a result, there is a common perception that microser-
vice applications are inherently more secure and less prone
to breaches. Nevertheless, we find this notion does not fully
capture the complexities of the microservice security land-
scape. We find microservice applications are not completely
immune to security issues, and can still be susceptible to
taint-style vulnerability, which is one of the most serious
security flaws and ranked as the top web vulnerability by
OWASP [13, 14]. This is because a microservice application
is commonly manifested as a web server and is designed
to be responsive to user quests. Attackers can leverage
this responsiveness, exploit the user-accessible entry points
exposed by the gateway and inter-service communication
mechanisms, and finally abuse the application’s sensitive
functionalities.

In this work, we aim to design a vulnerability detection
approach that can effectively vet the security of real-world
popular Java-based microservice applications against taint-
style vulnerabilities. Taint analysis has proven to be an
effective technique for detecting such vulnerabilities in tradi-
tional monolithic applications [51]. However, existing tech-
niques have not been specifically designed for microservice-
structured web applications. They faced difficulties in being
applied directly in this context. Specifically, three main chal-
lenges are encountered and should be carefully addressed.

• C1: How to infer the user-accessible entry points by
understanding the flexible semantics of the gateway con-
figuration? A microservice application consists of nu-
merous microservices, each with its own communication
entry points. Some of these entry points are exposed and
accessible to users, while others can only be accessed
internally. If the user-accessible entry points are not ac-
curately identified, it could negatively impact the detection
effectiveness. However, this is not a trivial task. The
challenge lies in the unstructured content of routing rules,
which complicates their interpretation and modeling.

• C2: How to accurately establish connections between
diverse inter-service communication senders and their
corresponding receivers? Inaccurate connections between
senders and receivers during inter-service communica-
tion can lead to significant false negatives. The primary
challenge in this analysis arises from the diverse im-



plementation mechanisms and diagrams for inter-service
communication in real-world microservice applications.
Identifying the sender among numerous method calls and
accurately linking it to the corresponding receiver, which
is often located in another service, presents substantial
challenges.

• C3: How to conduct effective taint analysis for detect-
ing microservices vulnerabilities? In the security analysis
of microservices, achieving high precision is crucial for
identifying high-value vulnerabilities that are often hidden
deeply within the system. However, existing precise tech-
niques, such as context-sensitive analysis, face significant
limitations. In microservice applications, the call chains
can be extremely long due to the concatenation of mul-
tiple services, making context-sensitive analyses highly
resource-intensive. This often results in memory issues
and timeout, creating barriers to effective vulnerability
detection.

In this paper, we propose a novel security analysis
approach for detecting taint-style vulnerabilities in microser-
vice applications, called MScan. Our MScan approach con-
sists of three primary phases. In the first phase, MScan con-
ducts an LLM-assisted approach to understand the semantics
of the gateway configuration file and subsequently identi-
fies the user-accessible entry points. In the second phase,
MScan identifies inter-service communication mechanisms
with a novel data structure, called Service Dependence
Graph (SDG). SDG helps conduct a comprehensive analysis
of taint propagation across different microservice compo-
nents. In the third phase, MScan employs a distance-guided
strategy, which dynamically adjusts the level of context
sensitivity based on the proximity of the analyzed method
to the source-to-sink path within the call graph. Leverag-
ing these techniques, MScan can effectively perform inter-
service context-sensitive taint analysis to detect taint-style
vulnerabilities within microservice applications.

To demonstrate the effectiveness and performance of
MScan, we evaluated it on 25 widely-used open-source
microservice applications and 5 industrial microservice ap-
plications. Our evaluation shows MScan identified 59 0-
day taint-style vulnerabilities, achieving a precision rate
of 71.95%. These newly discovered microservice vulner-
abilities can be exploited to gain control over the entire
application servers, and potentially result in significant fi-
nancial losses. Considering the substantial security impact
of these vulnerabilities, we responsibly reported them to the
developers of the affected applications. As of now, 31 of
these vulnerabilities have been assigned CVEs.

In summary, the paper makes the following main con-
tributions:

• We conduct a systematic study on microservice security
and understand its root cause of suffering taint-style vul-
nerabilities.

• We propose a novel taint-style vulnerability detection ap-
proach, called MScan, that can effectively vet the security
of real-world microservice applications. We will open-
source our MScan prototype upon publication.
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User ServiceUser

user requests

Login Service

Figure 1: An example that illustrates the typical architecture
of a microservice application.

• We evaluated MScan on 25 real-world popular microser-
vice applications and 5 industrial microservice applica-
tions. MScan successfully identified 59 (confirmed) 0-day
vulnerabilities. As of now, these vulnerabilities have been
assigned 31 CVE identifiers.

2. Background

As web applications evolve, more and more are adopt-
ing a microservice architecture, such as Uber [10], Twit-
ter [9], and Amazon [8]. Compared to traditional monolithic
applications [25], microservice-structured web applications
(shortened to microservice application) offer advantages in
scalability and maintainability [21, 22]. Furthermore, mi-
croservice architecture provides lightweight security isola-
tion between different service components. However, mi-
croservice applications are still particularly vulnerable to
taint-style vulnerabilities, which can pose significant secu-
rity risks.

In this section, we present an overview of the common
architecture of microservice applications (in §2.1) and in-
troduce the taint-style vulnerabilities within them (in §2.2).

2.1. Microservice-structured Web Application

A microservice-structured web application usually con-
tains three key components: microservices, gateway, and
inter-service communication. Below we present more of
their details.

• Microservices. Microservice components are autonomous,
self-contained services that collaborate seamlessly to col-
lectively achieve complex functionalities. Each microser-
vice is designed to perform its specific function indepen-
dently, running in its own environment and communicat-
ing with other microservices within the same application
through a well-defined API. For instance, as depicted in
Figure 1, the user login feature on a portal website is
facilitated through the synergistic operation of multiple
microservices.

• Inter-service Communication. This refers to the manner
in which microservices interact with each other. It can
occur through various protocols and message formats,
such as REST/HTTP [16] or gRPC [5]. This is crucial
for ensuring that services can collaboratively perform
complex tasks while maintaining loose coupling and high
cohesion. As depicted in Figure 1, the Login service



retrieves user data from the User service through inter-
service communication mechanisms, facilitating the login
process.

• Gateway. This acts as the central entry point for all
incoming requests in a microservice architecture, respon-
sible for routing requests to the appropriate microser-
vices [36]. It enforces strict routing policies, ensuring
only allowed requests can be forwarded to the appropriate
microservices, i.e., user-accessible services. As illustrated
in Figure 1, the Gateway forwards requests for the internal
microservices (i.e., Portal and Login) according to the
routing rules specified in its configuration file. Meanwhile,
it discards requests that attempt to directly access the User
service, thereby preventing illicit access by malicious
users.

2.2. Taint-style Vulnerability

Taint-style vulnerabilities are a widespread type of flaw
in web applications and consistently rank high on the
OWASP Top Ten list [13, 14]. These vulnerabilities typi-
cally occur when user-controlled variables are passed into
security-sensitive functions without proper validation, po-
tentially leading to critical exploits such as SQL Injection
(SQLi), Server Side Request Forgery (SSRF), and XML
External Entity Injection (XXE).

Given the inherent characteristics of the architecture,
taint-style vulnerabilities in microservice applications can
be divided into two categories based on their detection
and exploitation differences: intra-service vulnerability and
inter-service vulnerability.
Intra-service Vulnerability. Taint-style vulnerabilities of
the intra-service type typically occur within a single service
of an application. As illustrated in Figure 2, the @Path
annotation on line 1 signifies that this endpoint can be
accessed by users through the URL “/portal/query”. Users
can query specific values by inputting the “id” parameter
to the select() method (line 4). However, as the user-
controllable “id” parameter is passed to the eval() method
without undergoing any security validation, it presents a
potential security flaw. A malicious attacker could exploit
this by inputting a carefully crafted malicious input, using
the eval() method to execute arbitrary commands on the
server.

// Portal Service (can be accessed)
@Path(value = "/portal/query")
public User query(String id) {
   ...
   String query = (new ScriptEngineManager()).eval(id);
   return select(query);
}
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Figure 2: An example of intra-service vulnerability in mi-
croservice application.

Inter-service Vulnerability. Taint-style vulnerabilities in
the inter-service type manifest within multiple services of

an application. Unlike intra-service vulnerabilities, each mi-
croservice involved does not present a security threat on its
own. However, due to the data exchange occurring through
inter-service communication between them, a latent security
risk is engendered. Figure 3 is used as an illustrative exam-
ple to shed light on the root cause behind inter-service vul-
nerabilities within a microservice application. It depicts the
collaboration between two services - the Portal service and
the User service - both of which are deployed on separate
machines within a microservice application. The Portal
service dynamically generates tasks and sends them to the
Kafka [6] message queue (line 4), thereby invoking the user
information querying function in the User service (line 11).
When viewed in isolation, neither of these services poses
any security risk. The Portal service lacks the necessary
sinks that could be exploited, and the User service is devoid
of a controllable source. Nevertheless, the scenario takes an
interesting turn due to the existence of inter-service commu-
nication. A security vulnerability emerges when these two
services work in unison. Once an attacker gains insight into
the data communication mechanisms of the two services,
they can exploit this vulnerability from the user-accessible
service (i.e., entry point) to the vulnerability service. Specif-
ically, this can be done by injecting a meticulously crafted
malicious input into the Kafka message queue within the
Portal service. This input is subsequently retrieved in the
eval method within User service, leading to the triggering
of the vulnerability.

// Portal Service (can be accessed)
@Path(value = "/portal/query")
public User query(String id) {
   String op = "query";
   KafkaProducer kafkaProducer =  

new KafkaProducer(String.format("user/%s", op));
   kafkaProducer.send(id);
   ...
}

// User Service (can NOT be accessed)
@KafkaListener(topics="user/query")
public User queryTask() {
   …
   String id = kafkaConsumer.poll();
   String query = (new ScriptEngineManager()).eval(id);
   return select(query);
}
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Figure 3: An example of inter-service vulnerability in mi-
croservice application.

3. Challenges and Solutions

According to Jetbrains’ survey report [21, 22], Java is the
most commonly used language for developing microservice



applications (e.g., Uber [10], Twitter [9] or Amazon [8]).
To the best of our knowledge, there are no existing static
analysis techniques specifically designed for detecting taint-
style vulnerabilities in Java-based microservice applications.
To achieve this, an intuitive and straightforward workflow
can be outlined as follows: � Understand the gateway
configuration files to determine the user-accessible entry
point, i.e., the source; � Analyze inter-service communica-
tion mechanisms to establish data flow connections between
microservices; � Consider security-sensitive operations as
sinks, and conduct source-to-sink analysis to detect vulner-
abilities.

However, three main challenges arise with this workflow.
In this section, we first discuss the challenges encountered
(in §3.1) and then introduce our key ideas (in §3.2).

3.1. Challenges

Challenge I: How to infer the user-accessible entry
points by understanding the flexible semantics of the
gateway configuration? For traditional monolithic appli-
cations, existing works [44, 51, 61] consider all variables
corresponding to HTTP request parameters (e.g., $ GET
in PHP) as entry points (i.e., sources) to perform taint
propagation analysis, and then report unprotected source-to-
sink paths as potential vulnerabilities. The effectiveness of
these works is based on the assumption that all entry points
can be directly accessible by user requests. However, this
does not hold in microservice applications due to the request
routing control by gateway components, which means that
many entry points are not exposed to users and can only be
reached through inter-service communication. This leads to
many false positives if existing taint analysis approaches are
directly applied to microservice applications without thor-
oughly analyzing the request routing rules of the gateway
(as shown in §5.4, our evaluation results demonstrate that
the false positive rate reached as high as 60.14%).

Therefore, it is critical to understand the routing rules of
the gateway configuration, as these rules dictate whether the
entry points of a microservice are accessible to users or not.
Nevertheless, this is not a trivial task. The primary challenge
stems from the fact that routing rules are often config-
ured with developer-customized and unstructured content,
which complicates their interpretation. Besides, there are
diverse gateway components (e.g., SpringCloud-Gateway,
Zuul, APISIX), each with potentially hundreds of routing
rules [27, 28]. Manually analyzing and modeling these rules
is labor-intensive and impractical. Figure 4 illustrates an
example of a gateway configuration file with four simple
routing rules. The two rules on the left expose the portal
and api services to users, while the two on the right block
user requests, preventing the user and admin services from
being accessible. This is primarily achieved through the
filter field. The AddHeader and PrefixPath rules do
not block requests, whereas the SetResponseStatus and
Denied rules intercept user requests. It is clear that the
configuration of such rules is highly flexible and can involve

// Allow access
portal-route:
    path: /portal/**
    service: portal
    filters: AddHeader=X-Portal

api-route:
    path: /api/**
    service: api
    filters: PrefixPath=/v1
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// Deny access
user-route:
    path: /user/**
    service: user
    filter: SetResponseStatus=403

admin-route:
    path: /admin/**
    service: admin
    filter: AddResp=X-Admin, Denied

Figure 4: An example of a gateway configuration.

varying meanings and structures, making them difficult to
model comprehensively.

Challenge II: How to accurately establish connections
between diverse inter-service communication senders
and their corresponding receivers? Microservice appli-
cations typically propagate data flow through inter-service
communication. Taking Figure 3 as an example. In the
Portal service, the send() method (line 4) places the user-
provided id as a message into Kafka. Then, the User service
retrieves this message through the poll() method (line
9). This communication mechanism allows data to propa-
gate across different microservices. Clearly, this renders the
existing approach of tracking such inter-service data flows
in microservice applications, potentially missing many real
vulnerabilities. As shown in §5.4, the false negative rate
reached as high as 54.24%.

The primary challenge in analyzing inter-service com-
munication arises from connecting the senders with their
corresponding receivers when a communication operation
is encountered, especially given the highly flexible im-
plementation practices adopted in real-world systems. As
shown in Figure 3, the send method (line 4) acts as the
message sender, while the poll method (line 9) serves as
the message receiver. To establish the connection between
them, we first need to identify the sender from thousands of
method calls and then accurately link it to the corresponding
receiver, which may be located in another service. Given the
diversity of communication components and the variability
in implementation strategies, this task presents significant
challenges.

Challenge III: How to conduct effective taint analysis for
detecting microservices vulnerabilities? After determining
the user-accessible entry points and understanding inter-
service communication, an intuitive approach is to conduct
taint analysis directly over the whole microservice applica-
tion like a regular web application. However, this remains a
challenging task.

In taint analysis of web applications, calling-context
sensitivity is crucial for achieving high analytical preci-
sion. Context-insensitive approaches are highly efficient,
analyzing a method once and applying the results uniformly
across all its callsites. While this approach significantly
reduces analysis overhead, it disregards the unique context
of each method call site, leading to more false positives
in vulnerability detection. In contrast, context-sensitive ap-



proaches analyze each callsite of a method repeatedly to
achieve higher analytical precision. Nevertheless, this repet-
itive analysis introduces substantial overhead, increasing the
risk of timeouts and out-of-memory issues that interrupt the
analysis [31, 34]. In microservice applications, call chains
can be extremely long due to the concatenation of multiple
services, which exacerbates this issue. As demonstrated in
§5.3 and §5.4, our evaluation reveals that the false negative
rate due to out-of-memory exceptions reached as high as
50.85%, and the state-of-the-art approach, CodeQL [2], also
produced four false negatives due to timeouts. Therefore,
how to balance analytical precision and overhead in the
security analysis of microservice applications presents a
significant challenge.

3.2. Our Solution

To address these key challenges, we propose our novel
solutions from three key perspectives: 1) identifying user-
accessible entry points using an LLM-assisted approach, 2)
establishing the connection for inter-service communication
through a consistent communication mode and identifiers,
and 3) effectively detecting vulnerabilities using a distance-
guided strategy.
Solution I: LLM-assisted Entry Points Identification.
Although the gateway configuration files are highly flexi-
ble and unstructured, making comprehensive rule modeling
challenging, we observe that these routing rules frequently
convey rich semantics, which serve as indicators of their
intended behavior. Recent research has demonstrated that
Large Language Models (LLMs) exhibit strong capabilities
in understanding the semantics of natural language and code.
This is because LLMs are trained on extensive datasets that
include a substantial amount of both natural language and
code, enabling them to effectively comprehend and analyze
gateway configurations.

Therefore, we propose an LLM-assisted static analysis
technique to analyze the gateway configuration file in order
to identify user entry points. First, we apply a few-shot
learning approach [35] to construct prompts and utilize the
LLM to interpret the semantics of gateway configuration
files, allowing us to extract the routing rules that forward
requests to internal microservices. Then, we leverage static
analysis techniques to extract all potential entry points from
the application code and apply the extracted routing rules
to map them accordingly. Only those entry points that are
successfully mapped are considered exposed to users. These
user-accessible entry points serve as the starting points for
our analysis, offering a comprehensive understanding of how
user requests interact with the microservices application.
Take Figure 4 as an example. By leveraging the LLM-
assisted approach, we can understand the semantics of the
SetResponseStatus=403 and Denied fields in the rout-
ing rules, thereby accurately identifying the entry points
/portal/** and /api/** as user-accessible.
Solution II: SDG-based Inter-service Communication
Analysis. Inter-service communication is fundamentally a
network-based interaction mechanism that must adhere to

specific protocols and standards. Based on the OWASP Mi-
croservice Cheatsheet [7], we observed two key principles
required for successful communication between senders and
the corresponding receivers: (1) consistent mode, i.e., the
specific network request components, and (2) consistent
identifiers, i.e., the symbols used to ensure correct commu-
nication addresses and communication channel consistency.

Based on these two key principles, we identify the mode
and identifiers of senders and receivers, thereby establishing
accurate connections. Specifically, for the mode, we fol-
lowed guidelines from the Cloud Native Computing Founda-
tion (CNCF) [1, 26] to identify the APIs of commonly used
inter-service communication components (e.g., the send
method in Figure 3). This allowed us to systematically
determine the communication mode (detailed in §4.2.2).
For the identifier, we extracted values of the arguments
passed to the communication APIs, treating them as the
identifiers linking the sender and receiver. However, the im-
plementation of identifiers is highly flexible and difficult to
model. For instance, in Figure 3, the identifier “user/query”
is constructed using the String.format function and op
variable (line 4). To address this, we employed backward
data flow analysis to capture data flows associated with the
identifier, replacing its variables with the values found at the
terminal points (e.g., constant value “query”) of these data
flows, thereby determining its final value.

To facilitate subsequent analysis, we further represented
the connections between senders and receivers as edges
within the Service Dependence Graph (SDG). Leveraging
this, we can conduct a comprehensive analysis of taint
propagation across microservices, thereby significantly en-
hancing our ability to detect inter-service vulnerabilities.
Solution III: Distance-guided Context-sensitive Analysis.
In essence, the calling-context sensitive problem is a trade-
off between analysis precision and efficiency. Therefore, a
selective approach has become mainstream ([52, 60]), where
context-sensitive analysis is applied only to callsites related
to the analysis target to ensure precision, while context-
insensitive analysis is used for unrelated callsites to improve
efficiency. However, the fundamental challenge here is de-
termining which callsites are relevant to the analysis target.
To address this challenge, existing work often pre-defines
patterns (e.g., k-limit [60] or code pattern [52]) to select
interesting callsites for context-sensitive analysis. However,
we have found that these patterns may only be applicable
to specific scenarios and are not universally applicable (e.g.,
microservice applications).

Therefore, we have innovatively proposed a distance-
guided strategy to conduct selective context-sensitive taint
analysis. This strategy originates from our observation that
call sites closer to the source-to-sink path typically have
a greater impact on the accuracy of vulnerability detec-
tion, necessitating more precise analysis. Consequently, we
dynamically select the level of context sensitivity based
on the proximity of the analyzed callsite to the source-to-
sink path within the call graph. Specifically, for callsites
located directly on the source-to-sink path, our approach
employs fully context-sensitive taint analysis. For callsites
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Figure 5: The Architecture of MScan.

that are further from this path, our approach calculates the
shortest distance to the nodes on the source-to-sink path and
progressively reduces the level of context sensitivity as this
distance increases.

4. Methodology of MScan

In this section, we provide the design details of our
approach, called MScan. Figure 5 illustrates the architecture
of MScan, which consists of three key modules:

• User-accessible Entry Point Identification (§4.1). This
module focuses on understanding the semantics of
the gateway configuration to accurately identify user-
accessible entry points.

• Service Dependence Graph Construction (§4.2). This
module constructs the SDG to represent inter-service
communication, thereby facilitating the analysis of taint
propagation across microservices.

• Vulnerability Detection (§4.3). This module leverages the
inter-service and selective context-sensitive taint analysis
to detect vulnerabilities within microservice applications.

4.1. User-accessible Entry Point Identification

In this module, MScan first utilizes an LLM-assisted
method to understand the gateway configurations and ex-
tract the routing rules that forward requests to internal
microservices. Next, MScan extracts all entry points from
the application code and maps them to the extracted routing
rules to further identify the exposed ones.
Step I: LLM-assisted Routing Rule Extraction. First,
MScan utilizes a few-shot learning approach [35] to con-
struct the prompts. As depicted by Figure 11 in Appendix
§B, a typical few-shot prompt is structured into three main
components: (1) the task description, (2) a set of K example
queries with answers (known as K shots), and (3) the actual
query that needs to be answered. MScan constructs its
prompts as follows:

• Task description component offers a comprehensive ex-
planation of the task at hand. This includes specifying

the type of information that will be provided, outlining
how the input should be processed, and detailing the
expected format and content of the responses. Following
best practices in prompt engineering [15], we specified a
persona for the LLM as a gateway configuration analyzer
within the prompt and defined the response format, i.e.,
presenting the routing rules in JSON format.

• K shots serve as standard models that enable the LLM
to generate responses in the same format as the example
answers and learn to perform tasks by identifying common
patterns in routing rules within gateway configuration
files, all without requiring modifications to the model’s pa-
rameters. The format of the example queries is consistent
with that of the actual query, with each query followed
by its corresponding answer.

• Actual query provides contextual information about the
task, allowing the LLM to execute the instructions effec-
tively. MScan inputs the gateway configuration file as the
actual query to the LLM. This configuration file typically
has a fixed path or filename, making it easy to locate.
Based on the LLM’s response, MScan can accurately
extract the routing rules that forward requests to internal
microservices.

Step II: User-accessible Entry Point Identification. Then,
MScan utilizes the extracted routing rules to identify ex-
posed entry points. Specifically, MScan utilizes static anal-
ysis to extract the URIs of all entry points within the
microservice. For each extracted URI, MScan uses a regular
expression engine to evaluate whether any of the user-
accessible routing rules match the URI. Entry points that
successfully match these routing rules are designated as
exposed. Given that routing rules of every gateway com-
ponent support regular expression syntax, our approach,
though seemingly straightforward, has demonstrated high
effectiveness and generality. As illustrated in Figure 4, the
portal-route routing rule defines that all URIs starting
with /portal can be forwarded to the Portal service.
However, the filter element SetResponseStatus=403
of user-route routing rule determines that this rule will
not be used to identify exposed entry points.

4.2. Service Dependence Graph Construction

In this module, MScan constructs the Service Depen-
dence Graph (SDG) to represent the inter-service commu-
nication relationships within microservice applications.

4.2.1. SDG Definition. First, we utilize graph notation to
rigorously define the formal representation of the SDG.

Definition 1 (SDG). The SDG is constructed on top of the
Inter-procedural Control Flow Graph (ICFG) and represents
inter-service communication in microservices through spe-
cialized nodes and edges. We define them below.

Definition 2 (SDG Node). The set of SDG nodes N in-
cludes all nodes from the ICFG along with a new type
of node, termed I-Node. Specifically, an I-Node uniquely
represents each communication instance, connecting the



sender to its corresponding receiver within an inter-service
communication channel. To this end, each I-Node possesses
the following properties:

• identifier: The unique identifier for inter-service commu-
nication, typically a unique symbol (e.g., string), ensures
correct message routing and communication consistency.

• mode: The communication mode defines the APIs for
message transmission and reception, influencing the in-
teraction patterns between services.

We use Nicfg to represent the set of nodes in the ICFG.
Thus, the formal definition of N is as follows:

N = I -Node ∪Nicfg

Definition 3 (SDG Edge). Next, we describe the compo-
sition of the SDG edge set E. Specifically, E includes
all edges from the ICFG, encompassing both intra- and
inter-procedure control flow edges. Furthermore, to facilitate
inter-service taint analysis, we enrich the SDG with Data
Flow Edges and Communication Edges.

� Intra-service Data Flow Edge delineates the data de-
pendencies between variables within a single microservice.
Specifically, a data flow edge is a directed edge originating
from a parameter or variable and terminating at another
variable that depends on it. Through these data flow edges,
we can accurately trace taint propagation within a single
microservice, thereby establishing a robust foundation for
inter-service taint analysis. We denote the set of data flow
edges in the SDG as D.

� Inter-service Communication Edge represents mes-
sage transfers between different microservices. It connects
the sender and receiver with the same communication in-
stance through an I-Node, thus characterizing inter-service
communication and enabling taint analysis across microser-
vices. The definitions of sender and receiver are as follows:

• sender: The ICFG node that produces and sends the mes-
sage with an identifier to another microservice, typically
implemented by a method call (denoted as Ns).

• receiver: The ICFG node that receives and consumes
the message. The receiver retrieves the corresponding
message from the sender based on the predefined identifier
and communication mode (denoted as Nr).

We use C to denote the set of communication edges in the
SDG. The formal definition of C is as follows, where ns is
the sender ICFG node, i is the identifier node, and nr is the
receiver ICFG node:

C = {(ns, nr) | ∃ i ∈ I -Node, ns ∈ Ns(i) ∧ nr ∈ Nr(i)}
We use Eicfg to represent the set of edges in the ICFG.
Therefore, the formal definition of E is as follows:

E = D ∪ C ∪ Eicfg

4.2.2. SDG Construction. Then, we present how MScan
constructs the Service Dependence Graph (SDG) based on
the Inter-procedural Control Flow Graph (ICFG).
I-Node Construction. MScan employs a two-step approach
to construct I-Nodes within a microservice application.

First, MScan identifies the inter-service communication
mode, referred to as the mode property of the I-Node
which defines the APIs for message transmission and recep-
tion. Specifically, MScan models the commonly used APIs
of communication components based on the specifications
from the Cloud Native Computing Foundation (CNCF) [1].
These APIs are broadly categorized into two types: syn-
chronous (e.g., gRPC [5]) and asynchronous (e.g., Kafka [6]
message queue). MScan detects invocations of these mod-
eled APIs within the microservice application to determine
the communication mode. We detailed the specific com-
munication modes supported by MScan in Appendix §C.
Additionally, the sink list in MScan is highly customizable.
We acknowledge that there may be some communication
components not covered, but enabling MScan to cover them
necessitates only minimal manual effort.

Second, MScan extracts the arguments of these APIs
that serve as identifiers and assigns them as the identifier
property of the I-Node. Specifically, MScan performs back-
ward data flow analysis for each argument of these APIs.
This analysis traces the data flow from the point of the
argument back through the program to its origin, effectively
capturing the entire context in which the argument is used.
Once the program data flows are obtained, MScan replaces
the variables in the identifier with the values found at the
terminal points of these data flows, typically constant values.
This process involves examining the final values assigned to
the variables and using these values to define the identifiers
accurately.
Inter-service Communication Edge Connection. MScan
utilizes the constructed I-Nodes to establish inter-service
communication edges between senders and their correspond-
ing receivers, thereby constructing the comprehensive SDG.
Specifically, MScan leverages the modeled communication
APIs to identify the sender and receiver nodes within the
ICFG. This involves pinpointing the exact locations in the
code where the communication APIs are invoked, thus
identifying the nodes that act as senders and receivers in
the communication process. Subsequently, MScan connects
communication edges between the corresponding I-Node of
senders and receivers that share the same identifier and
mode. By linking these nodes, MScan effectively maps
out the communication pathways, illustrating how messages
traverse between different microservices.
Intra-service Data Flow Edge Connection. MScan aims
to establish data flow edges within the SDG. Specifically,
MScan applies the well-established IFDS (Inter-procedural,
Finite, Distributive, Subset) algorithm [57] to construct these
data flow edges. The IFDS is a widely used and highly ef-
fective method for solving a broad class of inter-procedural
data flow analysis problems by reducing them to generalized
graph reachability tasks. This approach has been extensively
adopted in numerous prior works [31, 50]. By utilizing the
IFDS algorithm, MScan constructs data flow edges between
variables exhibiting data dependencies, thereby facilitating
the accurate tracking of taint propagation within single
microservices.
Construction Example. We refer to Figure 6 to further
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Figure 6: SDG of the example code in Figure 3.

explain how MScan constructs the SDG for the code in
Figure 3 and demonstrate how MScan utilizes the SDG to
perform inter-service data flow analysis.

Firstly, MScan constructs the I-Nodes for both the
sender and receiver. For the sender, MScan first identifies
the mode property as Kafka based on the APIs listed in
§C. Then, using backward dataflow analysis, it determines
that the identifier property is “user/query” (line 4). Accord-
ingly, MScan constructs the I -Node(user/query,Kafka) for
the send method (line 5). For the receiver, MScan applies
the same approach to construct its I-Node for the poll
method (line 9). Secondly, MScan establishes the communi-
cation edge between the send method in the Portal service
and the poll method in the User service due to their shared
I-Node, as depicted by the green line in Figure 6. Finally,
by leveraging the intra-service data flow edge (shown by
the red lines in Figure 6), MScan successfully connects the
inter-service data flow and traces the taint flow from the id
parameter of the query method (line 2) to the id parameter
of the eval method (line 10). By utilizing the SDG, MScan
performs effective inter-service data flow analysis.

4.3. Vulnerability Detection

In this section, we elaborate on the details of our ad-
vanced distance-guided strategy and its efficacy in detecting
microservice vulnerabilities.

4.3.1. Selective Context-Sensitive Taint Analysis. We first
introduce the concept of context sensitivity in taint analysis,
and then explain how our distance-guided strategy works
for conducting selective context-sensitive taint analysis, fol-
lowed by an example to demonstrate its effectiveness in
microservice security analysis.
Context Sensitivity in Taint Analysis. Context sensitivity
is a fundamental mechanism for achieving high analysis
precision, as it distinguishes each method callsite based
on its calling context, thereby allowing each callsites to
be analyzed uniquely according to their respective con-
texts [47, 58]. Take Figure 7 (a) as an example. Suppose
the context sensitivity is set to 3. For the method callsite
D, it records two context objects: [A,C,D] and [B,C,D].
However, when the context sensitivity is reduced to 2,
it only records one context object: [C,D]. These objects
are stored and analyzed within memory. Clearly, the lower
the context sensitivity, the less precise the taint analysis
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Figure 7: An example of Distance-guided Strategy.

becomes. Conversely, as context sensitivity increases, the
memory and time required for recording and analysis also
grow significantly.

Distance-guided Strategy. The distance-guided strategy ad-
justs the degree of context sensitivity based on the proximity
of the analyzed method to the source-to-sink path, thereby
focusing more effort and resources on security-critical anal-
yses. We use formalized equations to describe the distance-
guided strategy as follows. Specifically, we refer to the
method nodes on the source-to-sink path as dominant nodes,
denoted as DN , and other method nodes as un-dominant
nodes, denoted as UN . We define dist(n,DN) as the
distance between a node n and its nearest dominant node in
the call graph. For each node n, its context-sensitivity S(n)
is defined as follows. Sm represents the maximum context
sensitivity, which is equal to the length of the longest source-
to-sink path. K represents the factor to adjust the influence
of distance (with a default value of 2).

S(n) =

{
Sm n ∈ DN

max
(
1, Sm

dist(n,DN)2·K
)

n ∈ UN

Following this, for methods directly within the source-to-
sink path, MScan employs fully context-sensitive taint anal-
ysis, i.e., Sm. For other methods that belong to the set of un-
dominant nodes, MScan calculates the shortest distance to
the nodes of the source-to-sink path, i.e., dist(n,DN), and
correspondingly reduces context sensitivity as this distance
increases.

Figure 7 (b) illustrates an example of the distance-guided
strategy. The longest source-to-sink path is 4, meaning that
Sm is 4. For method callsites on the source-to-sink path, i.e.,
A, B, C, and D, MScan treats them as dominant nodes
and performs the context-sensitive analysis. As a result,
MScan maintains a total of 8 context objects between these
callsites: [A,B], [A,C], [A,B,C], [A,B,C,D], [A,C,D],
[B,C], [B,C,D], [C,D]. For other method calls, MScan
considers them as non-dominant nodes and reduces context
sensitivity as the distance from the source-to-sink path in-
creases. For instance, the callsite G is at a distance of 2
from the source-to-sink path, so its context sensitivity is
reduced from Sm (i.e., 4) to 1, which decreases the number
of maintained context objects from 4 to 1, i.e., [E,G]. As the
complexity of the call graph increases, the advantages of our
distance-guided strategy become increasingly pronounced
(as detailed in §5.4).



4.3.2. Microservice Vulnerability Detection. MScan uti-
lizes the constructed SDG to perform inter-service context-
sensitive taint analysis for detecting vulnerabilities in mi-
croservice applications. The process can be divided into two
primary steps. Initially, MScan treats user inputs (i.e., pa-
rameters of user-accessible entry points) as the taint sources,
and employs the data flow edges of the SDG to trace the
propagation path of the taint. This step is highly effective for
intra-service taint analysis, accurately identifying variables
that have data flow dependencies with the taint. Then,
when inter-service communication is encountered, MScan
uses the SDG’s communication edges to locate the receiver
in other microservices, thereby continuously tracking the
propagation path of the taint across different microservices.
Finally, if the tainted variable could be used in a security-
sensitive operation, i.e., the sink, MScan will report a vul-
nerability.

5. Evaluation

5.1. Experimental Setup

Implementation. We have developed a prototype of MScan
targeting Java-based microservice applications. Specifically,
our prototype is built on Tai-e [60], a state-of-the-art static
analysis framework, and consists of over 7,000 lines of Java
code. We employ the standard static analysis to construct
the inter-procedural control flow graph (ICFG) and extend
Tai-e’s taint analysis plugin to build the service dependence
graph (SDG), thereby performing inter-service and context-
sensitive taint analysis.

For the security-sensitive sinks, we referred to industrial
static analysis tools and existing works [44, 51, 61] to
model the method signatures of various sensitive sinks.
For example, the rule <groovy.lang.GroovyShell:
java.lang.Object.evaluate(String),0> mod-
els the sinks for groovy-code injection. To date, MScan sup-
ports 8 vulnerability types, i.e., command injection, SSRF,
XXE, SSTI, Groovy-code injection, SpEL injection, SQL
injection, and arbitrary file operations. Extending MScan to
support additional types requires minimal effort.

For the sanitizer, MScan adopted models of common
sanitizers from CodeQL, e.g., PathSanitizer [29], to
stop the taint propagation. These sanitizers effectively min-
imize MScan’s false positives.

For the LLM, MScan leverages gpt-4o [4] to perform
the gateway semantic understanding task and we consumed
about 47k tokens during the evaluation.
Experiments. All experiments were conducted on a server
equipped with a 64-core Intel Xeon Gold 6242 CPU and
256 GB of memory, running Ubuntu 20.04. Our evaluation
seeks to answer the following four research questions:

• RQ1: How effective is MScan in detecting taint-style vul-
nerabilities within real-world microservice applications?

• RQ2: How effective is MScan compared with the state-
of-the-art techniques?

• RQ3: How do the different components of MScan con-
tribute to its success?

• RQ4: How efficient is MScan in performing the analysis?

TABLE 1: Breakdown of our evaluation dataset.

Open-source Applications # Stars # LoCs

Apollo 29,170 44,815

Yudao-cloud 16,309 134,585

Piggymetrics 13,258 3,286

Mall-swarm 11,417 65,933

Paascloud-master 9,796 25,149

basemall 8,966 42,571

SpringBlade 6,397 6,337

Spring-Cloud-Platform 6,339 7,554

Mall4cloud 5,732 27,272

Pig 5,604 13,071

Lamp-cloud 5,369 33,478

Microservices-platform 4,485 12,508

RuoYi-Cloud-Plus 4,303 41,519

PassJava-Platform 2,564 10,075

Spring-boot-cloud 2,121 5,984

Youlai-mall 2,027 14,065

Open-mall 1,985 30,540

Gulimall-learning 1,994 20,714

SuperMarket 1,947 2,821

Mogu blog v2 1,572 26,136

Light-reading-cloud 1,277 3,613

Novel-cloud 1,170 6,154

RuoYi-Cloud 1,152 18,245

Spring-cloud-dataflow 1,113 112,630

Sitewhere 1,020 38,784

Industrial Applications # Stars # LoCs

T*** / 84,978

M*** / 58,387

M*** / 35,520

B*** / 173,155

Y*** / 13,280

Dataset. In all, our dataset includes 25 open-source and
5 industrial microservice-structured web applications. We
provide detailed information about these applications in
Table 1. The construction process is as follows:

• Open-source Applications. We collected microservice
applications from popular open-source repositories (e.g.,
GitHub [3]) based on the following criteria. 1) Each ap-
plication has over 1,000 stars in its respective repositories,
confirming its popularity. In addition, we exclude tutorial
applications, such as demos and study projects. 2) Each



TABLE 2: Distribution of detected vulnerabilities (RQ1).

Vulnerability Type TP FP Prec(%)

Intra-service 27 12 69.23%

Inter-service 32 11 74.42%

Total 59 23 71.95%

application is required to possess a microservice-oriented
architecture, and we determined this by checking for the
presence of the keyword ‘microservice’ in the project
description and analyzing the frameworks employed in
the project (followed by [55]). As a result, we collected
25 open-source microservice applications, most of which
have also been utilized in existing research [37, 48, 55].

• Industrial Applications. We collaborated with a world-
leading fintech company that provides services to billions
of users. They generously supplied us with 5 industrial
applications, which we have also included in our evalua-
tion dataset. Note that the company has a well-established
SDL (Secure Development Lifecycle) team. Each ap-
plication deployed online undergoes multiple rounds of
manual inspection, including comprehensive code audits
and extensive black-box testing. Therefore, identifying
unknown vulnerabilities within these applications is really
challenging.

5.2. RQ1: Effectiveness

In this part, we evaluated the effectiveness of MScan in
detecting taint-style vulnerabilities in microservice applica-
tions across the dataset.
Result Overview. Overall, MScan reported a total of 82
potential vulnerabilities. Table 2 presents the details. Specif-
ically, 39 of these reported vulnerabilities are of the intra-
service type, while 43 are of the inter-service type. Through
manual inspection of each case, we ultimately confirmed 59
taint-style vulnerabilities, including SQL injection (SQLi),
XML external entity injection (XXE), server-side request
forgery (SSRF), groovy code injection (GCi), and arbitrary
file operations (AFW & AFR). These vulnerabilities affected
11 open-source and 2 industrial microservice applications.
Bug Disclosure. These detected vulnerabilities pose sig-
nificant security threats to the target applications. For the
39 vulnerabilities detected in open-source applications, at-
tackers can exploit these vulnerabilities to steal data stored
in databases, upload malicious files to the application, and
even control the entire server. Consequently, we promptly
notified the developers of all confirmed vulnerabilities in
the affected applications. Some of these vulnerabilities were
immediately addressed and patched, while for others, we are
still actively communicating with the developers to assist
them in understanding and resolving the issues. As of now,
as shown in Table 5 in §A, we have received 31 CVE iden-
tifiers in acknowledgment, including CVE-2024-22263 [20]
in the Spring Projects [18], which has a CVSS score of 8.8.
For the 20 vulnerabilities detected in industrial applications,

all were previously unknown and newly identified. These
vulnerabilities can lead to arbitrary code execution and even
take over the entire web server, severely compromising the
integrity of user data and the security of company systems.
These findings demonstrate MScan’s practical utility.

False Positives. We comprehensively analyzed all the 23
false positives, and their causes can be mainly divided into
three aspects. Firstly, 12 false positives were caused by
developer-customized sanitizers. To prevent malicious user
input from flowing into the parameters of security-sensitive
operations, developers implement checks on the data flow
or control flow of user inputs, i.e., sanitizer. However, these
developer-customized sanitizers are highly flexible, making
them difficult to identify through simple modeling, causing
MScan to report protected paths as potential vulnerabili-
ties, leading to false positives. Secondly, 9 false positives
were caused by unreachable vulnerable code. Since MScan
performs static analysis to trace paths from source to sink
without constraint solving for the path, it reports vulnerable
paths that are actually unreachable due to unsatisfied con-
straints, resulting in false positives. Thirdly, 2 false positives
were caused by the inability to distinguish the developer’s
design intent. For example, in yudao-cloud [30], developers
provided application administrators with the capability to
execute arbitrary SQL statements for efficient management
of application data. It was apparent that there is a data flow
from user input to database operations, prompting MScan to
report it as a vulnerability. After active discussions with the
developers, it was determined that this functionality was an
intended feature. Consequently, we reclassified this instance
as a false positive by MScan.

5.3. RQ2: Comparison

In this part, we compare the effectiveness of MScan
with the state-of-the-art technique (i.e., CodeQL [2]) across
the entire dataset.

Baseline Setup. CodeQL is the current state-of-the-art tech-
nique widely used in static vulnerability detection. CodeQL
comes with a wide range of built-in, ready-to-use rules,
enabling it to detect various types of CWE in web applica-
tions [23]. To ensure a fair and comprehensive comparison,
three authors of the paper (each with five years of security
research experience) manually reviewed CodeQL’s rules and
documentation for 65 built-in CWEs [23, 24], ultimately se-
lecting 19 taint-style vulnerability-related CWEs and applied
them to analyze all the applications in our dataset.

Ground Truth Construction. Given that comparing the
effectiveness of baseline with MScan requires labeling all
vulnerabilities in the dataset, which is not feasible [39, 44].
Therefore, we employed a commonly used method [61]
by constructing a ground truth from the combined set of
vulnerabilities identified by both MScan and CodeQL in
our dataset. All vulnerabilities in the ground truth were
meticulously verified and tested with PoC, ensuring that only
actual vulnerabilities were included. Ultimately, our ground
truth consists of 59 verified vulnerabilities.



TABLE 3: Comparison between MScan and CodeQL
(RQ2).

Baselines TP FP FN Prec(%) Recall(%)

CodeQL 23 35 36 39.66% 38.98%

MScan 59 23 0 71.95% 100.00%

Result Overview. Table 3 provides a detailed comparison of
the effectiveness of MScan and CodeQL across the entire
dataset. Overall, MScan demonstrates better performance,
surpassing CodeQL by 90.72% in precision and 156.54%
in recall. More specifically, when tested against the ground
truth of 59 vulnerabilities, MScan identifies all of them,
whereas CodeQL detects only 23 vulnerabilities with 35
false positives. These results underscore the superior capa-
bility of MScan in effectively detecting taint-style vulnera-
bilities within microservice applications.

False Positive Analysis. In total, CodeQL reported 35
false positives. After a thorough analysis, we found that
apart from the 14 cases also reported by MScan, CodeQL
reported 21 additional false positives. The first reason is
that the gateway routing rules prevent certain entry points
from being accessed by users. As described in §3.1, devel-
opers may configure the gateway to restrict access to some
internal microservices for security purposes. Consequently,
the vulnerable endpoints within these microservices remain
inaccessible, leading to false positives. The second reason is
CodeQL’s limited context-sensitive approach. Specifically,
CodeQL employs a context-sensitive strategy similar to k-
CFA [54]. As a result, for certain sinks deeply hidden within
the system, CodeQL is unable to distinguish their calling
contexts, which leads to false negatives during detection.

False Negative Analysis. For the 36 false negatives,
CodeQL missed them due to two main reasons. On one
hand, 32 false negatives were caused by incomplete call
graph construction. As described in §3.1, CodeQL is
unable to understand inter-service communication mecha-
nisms, making it incapable of tracking inter-service data
flow, rendering it incapable of tracking inter-service data
flow and thus missing all inter-service vulnerabilities. On
the other hand, 4 false negatives are attributed to the context-
sensitive analysis approach of CodeQL. Specifically, while
the k-CFA context-sensitive strategy of CodeQL is effective
in some cases, for large applications with a vast number of
source-to-sink paths, CodeQL encountered timeout errors,
leading to missed vulnerabilities.

5.4. RQ3: Ablation Study

In this part, we conducted an ablation study to demon-
strate the necessity of each key component of MScan to
accurate and efficient vulnerability detection.

Variants Setup. First, we constructed four variants of
MScan, each of which disables a key component and uses
the rest of the system as is, the details are as follows.

TABLE 4: Ablation study for three variants of MScan
(RQ3).

Baselines TP FP FN Prec(%) Recall(%)

MScan-NoEntry 59 89 0 39.86% 100%

MScan-NoSDG 27 12 32 69.23% 45.76%

MScan-CS 29 11 30 72.50% 49.15%

MScan-CS-2call 59 251 0 19.03% 100.00%

MScan 59 23 0 71.95% 100.00%

• MScan-NoEntryDet. In this variant, we disabled a key
component of the MScan, namely User-accessible Entry
Point Identification, leading to the variant directly treating
all entry points, i.e., user-accessible and user-inaccessible
entry points, as sources for taint analysis.

• MScan-NoSDG. In this variant, we disabled the SDG
Construction component of the MScan, which means
the variant relies solely on intra-service taint analysis
capabilities to detect vulnerabilities.

• MScan-CS. In this variant, we disabled the Distance-
guided Strategy of MScan and employed the no-selective
context-sensitive strategy, i.e., fully context-sensitive, to
assess its critical role in microservice vulnerability detec-
tion.

• MScan-CS-2call. In this variant, we also disabled the
Distance-guided Strategy of MScan and employed a
SOTA k-limit selective strategy from Tai-e [60]. Follow-
ing the experimental setup described in Section 6.5 of
Tai-e, we set k to 2 (i.e., 2-call context-sensitive), which
only tracks method call chains up to a depth of 2. For
any callsites beyond this depth, the analysis degrades to
a context-insensitive approach.

Result Analysis. Table 4 provides a breakdown of the
comparison results between MScan and its three variants. It
is clear that these four key components are essential for ef-
fective vulnerability detection in microservice applications.
A detailed analysis of the results is as follows:

� MScan vs. MScan-NoEntryDet. In this phase, we
detail MScan’s identification of entries across the entire
dataset and emphasize the importance of the exposed entry
point determination component by comparing the vulnera-
bility detection results of MScan and MScan-NoEntry.
Overall, MScan identified 4611 entry points within the
dataset, of which 1454 are unexposed, meaning they are
not exposed to users. This indicates that over 31% of entry
points are not directly accessible by users in these mi-
croservice applications. Incorrectly treating these unexposed
entries as sources for taint analysis could result in false
positives.

As shown in Table 4, MScan-NoEntry exhibited a
decline in accuracy to 39.86% compared to the full version
of MScan. We conducted a thorough analysis of the addi-
tional false positives produced by MScan-NoEntry and
discovered that all these false positives stemmed from in-
ternal entries. Specifically, MScan-NoEntry misclassified
unexposed internal entry points as sources, thereby resulting
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Figure 8: Analysis efficiency of MScan and MScan-CS in
large-scale applications, i.e., yudao-cloud [30].

in a substantial number of false positives.

� MScan vs. MScan-NoSDG. In this phase, we demon-
strate the accuracy of constructing the SDG’s critical com-
munication edges and compare the vulnerability detec-
tion results between MScan and MScan-NoSDG. Overall,
MScan identified 1,050 instances of inter-service commu-
nication across 11 different communication mechanisms (as
detailed in Appendix §C) in the entire dataset and suc-
cessfully determined the target addresses for all these com-
munications, thereby establishing the corresponding com-
munication edges in the SDG. We manually verified all
these edges and found that 16 instances could not deter-
mine communication addresses through dataflow analysis
(e.g., addresses containing SpEL variables), which hinders
accurate SDG construction. Nevertheless, through detailed
manual analysis, we discovered that these instances did
not result in any false negatives in vulnerability detection.
This high-quality SDG thus provides a solid foundation for
effective inter-service vulnerability detection.

For the MScan-NoSDG variant, since it lacks the ca-
pability to construct an SDG, it is unable to track taint
propagation across microservices. Consequently, it failed to
identify any vulnerabilities in the microservice applications
within our dataset. as shown in Table 4, the MScan-NoSDG
variant failed to detect any inter-service vulnerabilities and
its accuracy dropped to 45.76%. This clearly highlights the
critical role of the SDG component in the vulnerability
detection process.

� MScan vs. MScan-CS(-2call). To clearly demon-
strate the effectiveness of MScan’s distance-guided strategy,
we conducted a comparative analysis of the number of
context objects maintained by MScan, MScan-CS, and
MScan-CS-2call during vulnerability detection. Using
the largest application in our open-source dataset, yudao-
cloud [30], which has over 130k lines of code, we observed
significant differences. As shown in Figure 8, MScan-CS’s
number of contexts continuously increased, reaching ap-
proximately 1010, and eventually caused an out-of-memory

exception after about 45 minutes. In contrast, MScan’s
distance-guided strategy dynamically adjusted the number of
maintained contexts, reducing them by at least two orders of
magnitude, from 1010 to 108 (note that we cannot evaluate
the exact order of magnitude due to the early interruption
of the MScan-CS).

We further present the results of the two variants across
the entire dataset to underscore the importance of the
distance-guided strategy. As shown in Table 4, compared
to MScan, the recall rate of MScan-CS is merely 49.15%,
indicating that it missed a significant portion of the vulner-
abilities detected by MScan. This is because MScan-CS
could only complete the analysis for 11 applications in
the entire dataset. Within the experimental setup outlined
in §5.1, it encountered out-of-memory exceptions when
analyzing other applications, resulting in a high number
of false negatives. For the MScan-CS-2call variant, it
successfully completed all analyses. However, since the 2-
call context-sensitive strategy was insufficient to analyze the
extensive call chain of microservice applications, it degraded
into a context-insensitive analysis, leading to many false
positives, with a precision rate of only 19.03%.

5.5. RQ4: Efficiency

In this experiment, we evaluated the performance of
MScan in conducting end-to-end analysis across the entire
dataset. The end-to-end analysis time for MScan encom-
passes both the SDG construction and the inter-service taint
analysis phases. Overall, MScan analyzed the 30 appli-
cations in the dataset in a total of 8.45 hours, averaging
16.9 minutes per application. Considering the complexity
inherent in microservice calling contexts, we believe that
the analysis time remains within acceptable and manageable
limits. The efficiency of MScan can be attributed to its effec-
tive distance-guided strategy, which significantly reduces the
overhead associated with analyzing sink-unrelated method
calls, thereby accelerating the analysis process.

6. Case Study

In this section, we showcase some interesting taint-
style vulnerabilities of inter-service type detected by MScan
in highly popular applications, further illustrating the high
risk posed by these vulnerabilities and demonstrating the
practical utility of MScan in real-world scenarios.
Case I: AFW vulnerability in Spring-Cloud-Dataflow (Inter-
service Communication via RestTemplate [16]). The spring-
cloud-dataflow [19] is a microservices-based toolkit devel-
oped under the Spring Project [18] for building streaming
and batch data processing pipelines, with over 1,100 stars
on GitHub. As depicted in Figure 9, MScan identified an
arbitrary file write (AFW) vulnerability within the appli-
cation, enabling attackers to gain control over the appli-
cation server by injecting malicious files. The identified
vulnerability involves the interplay between the DataFlow
and Skipper microservices within the application. In the



@RequestMapping("/streams/deployments")
Response deploy(Map<String, String> properties) {
    this.deployStream.upload(properties);
}

public Object upload(UploadRequest uploadRequest) {
    ...    
    String url = String.format("%s/%s", baseUri, "upload");
    Object response = restTemplate.exchange(url, entity);
}

a) Code snippet in DataFlow Service

b) Code snippet in Skipper Service
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@RequestMapping("/api/package/upload")
Metadata upload(UploadRequest uploadRequest) {
    return packageService.uploadFile(uploadRequest);
}

public Metadata uploadFile(UploadRequest req) {
    …
    Path file = Paths.get(uploadDir + req.getName());
    Files.write(req.getFileAsBytes(), file);
}

Figure 9: Arbitrary File Write vulnerability in Spring-Cloud-
Dataflow application (Spring Project on GitHub).

DataFlow service, the deploy method acts as a user-
accessible entry point, allowing users to deploy tasks via
HTTP requests to the /streams/deployments endpoint.
Subsequently, user input flows into the upload method
(line 3) and communicates with the Skipper microservice
through the restTemplate.exchange method (line 7).
Through this inter-service communication, the user-provided
filename is directly passed to the write method within the
Skipper service (line 15), enabling attackers to manipulate
the file storage path on the server, thus leading to an arbitrary
file write vulnerability. We reported this critical issue to the
Spring Project and received a CVE identifier (CVE-2024-
22263) with a CVSS score of 8.8.

Case II: SQL injection vulnerability in Sitewhere (Inter-
service Communication via gRPC [5]). The sitewhere [17]
is a highly popular (over 1.1k stars on Github) indus-
trial strength open-source application enablement platform,
which has been utilized in existing research [48]. Fig-
ure 10 illustrates a SQL injection vulnerability reported
by MScan in this application. The vulnerability involves
the WebRest and Event microservices. In the WebRest
microservice, user input starts from the user-accessible entry
point (getEventByAltId in line 3) and flows into the
getDeviceEventById method (line 7), which communi-
cates with the Event microservice via the gRPC framework
(line 10). Subsequently, in the Event microservice, the user
input is passed into the getEvent method and is ultimately
concatenated into an SQL query (line 15), thereby leading
to a SQL injection vulnerability. Given the severity of this
vulnerability, we promptly reported it to the developers of
the affected application and engaged in active discussions
to devise a solution. Consequently, we were granted a CVE
identifier (CVE-2024-37827).

@Path("/alternate/{alternateId}")
public Event getEventByAltId(String alternateId) {
    return getDeviceEventById(alternateId)
}

public Event getDeviceEventById(String alternateId) {
    EventGrpc.EventStub stub = EventGrpc.newStub();
    return stub.getDeviceEventById(alternateId);
}

public class Event extends EventGrpc.EventImplBase {
    public Event getDeviceEventById(Request request) {
        return getEvent(request.getAltId());
    }
}

public static IDeviceEvent getEvent(String altId) {
    String query = 
              "select * from events where altid='" + altId + "'";
    return getInflux().query(query);
}

a) Code snippet in WebRest Service

b) Code snippet in Event Service
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Figure 10: SQL injection vulnerability in Sitewhere appli-
cation (over 1k stars on Github).

7. Discussion

Legality and Ethicality. This study has not presented any
legal or ethical issues. We obtained the source code for
local analysis and responsibly reported all detected vulnera-
bilities in open-source applications to the CVE Numbering
Authority (CNA), and also assisted companies in fixing vul-
nerabilities in industrial applications. Additionally, we have
contacted all the developers regarding the vulnerabilities
found in §5.2, and will continue to communicate with them
throughout the vulnerability disclosure process.
Future Work. Like other static analysis approaches, the
prototype of MScan also faces analysis difficulties. On
one hand, MScan may produce false negatives due to
dataflow interruptions during the analysis process. This can
be mitigated by adding transfer rules to the taint analysis
process [43]. On the other hand, MScan may report false
positives due to the complex and diverse sanitizers. Identify-
ing sanitizers is an inherent challenge in static taint analysis,
as noted in many existing works [32, 51].

8. Related Work

Taint-style Vulnerability Detection. In recent years, the
techniques for automatically detecting taint-style vulnera-
bilities have been extensively studied.

A commonly used technique is static taint analysis. Ex-
isting works in this area can be broadly categorized into two
lines. The first line of work adopts traditional taint analysis
methods [32, 45, 51], which primarily focus on analyzing
taint propagation within a single application. However, these
approaches are not specifically designed for microservice
applications and are therefore inadequate for addressing the



challenges presented in this work. The second line of work
attempts to perform cross-application static taint analysis in
both web and binary domains [33, 38, 42, 46, 56]. Similar
to the objective of MScan, these studies propose various
techniques to establish data flow relationships across appli-
cations, thereby enabling the detection of cross-application
taint-style vulnerabilities. However, applying these works
directly to microservice-structured web applications does
not yield effective results.

Specifically, DBTaint [38] and MiMoSA [33] observed
that cross-application taint propagation may occur through
database operations. Therefore, they modeled database op-
erations and associated taint labels with stored values in
the database to detect cross-application taint-style vulner-
abilities in web applications. However, as shown in §5,
microservice applications often contain inter-service taint-
style vulnerabilities that do not involve database access,
which DBTaint is unable to detect. CACG [46] analyzed the
qualified names of cross-application communication classes
and created edges between method calls and definitions
with identical qualified names across different applications,
thereby constructing a Cross-Application Call Graph target-
ing web applications. However, this call graph only supports
coarse-grained method call analysis and cannot perform
inter-service data flow analysis. Additionally, it ignores the
gateway component, leading to a high number of false
positives. Karonte [56] and Mango [42] analyzed hard-coded
addresses (referred to as unique data keys by the authors)
used in inter-process communication (IPC) to construct the
data flow between the processes (or binaries) involved in
the communication. This approach effectively helps detect
cross-binary vulnerabilities. We appreciate their strategy of
analyzing hard-coded communication addresses, which pro-
vides valuable insights for designing our service-dependence
graph. However, in microservice applications, establishing
inter-service communication links is more challenging (e.g.,
communication addresses may contain variables, making
them difficult to extract). Therefore, directly applying their
approaches to analyze microservice-based web applications
is infeasible.

Another widely employed technique is dynamic testing
(e.g., fuzzing) [39, 40, 44, 61]. Unfortunately, in the con-
text of microservices, these approaches face three inher-
ent limitations. First, these approaches require significant
manual effort to deploy and coordinate multiple indepen-
dent services. Second, existing fuzzing techniques struggle
to gather key information (e.g., post-instrumentation basic
block coverage) across independently deployed microser-
vices. Third, testing throughput is reduced due to latency
introduced by inter-service communication. These inherent
limitations make their application to vulnerability detection
in microservices less than ideal.
Microsevice Security. Recently, the security of microser-
vice applications has garnered attention [48, 53, 59]. For
instance, Minna et al. [53] performed a systematization of
knowledge about the run-time security of microservices.
ThunQ [59] highlighted that application-level access control
policies play a crucial role in mitigating risks by preventing

unauthorized access to the microservice application. Li et
al. [48] attempted to mitigate microservices from being
abused by other compromised microservices through the
automatic generation of access control policies. However,
taint-style vulnerabilities were not their primary focus and
thereby were rarely explored or studied. Furthermore, their
techniques cannot be directly applied to detect taint-style
vulnerabilities in microservice applications.
LLM-assisted code analysis. Recent advancements in code
analysis techniques using LLMs [41, 49, 62] have demon-
strated that LLMs can effectively understand code semantics
and perform various code analysis tasks. These develop-
ments inspire us to employ LLMs to analyze routing rules
within gateway configuration files.

9. Conclusion

In this paper, we propose MScan, a novel security-
vetting approach that can automatically detect injection-
based vulnerabilities within microservice applications.
Leveraging an inter-service taint analysis technique, MScan
can effectively detect intra- and inter-service microservice
vulnerabilities. We evaluated MScan on 30 real-world Java-
based microservice applications. Overall, MScan discovered
59 high-risk 0-day vulnerabilities and 31 of them have been
assigned with CVE identifiers. We hope our work can aid the
community in addressing the rising threats of microservice
vulnerabilities.
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[44] E. Güler, S. Schumilo, M. Schloegel, N. Bars, P. Görz,
X. Xu, C. Kaygusuz, and T. Holz, “Atropos: Effective
Fuzzing of Web Applications for Server-Side Vulner-
abilities,” in Proceedings of the 33rd USENIX Confer-
ence on Security Symposium (USENIX), 2024.

[45] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A
Static Analysis Tool for Detecting Web Application
Vulnerabilities,” in 2006 IEEE Symposium on Security



and Privacy (SP), 2006.
[46] M.-A. Laverdière, B. J. Berger, and E. Merloz, “Taint

analysis of manual service compositions using Cross-
Application Call Graphs,” in 2015 IEEE 22nd Inter-
national Conference on Software Analysis, Evolution,
and Reengineering (SANER). IEEE, 2015, pp. 585–
589.

[47] O. Lhoták and L. Hendren, “Context-sensitive points-
to analysis: is it worth it?” in International Conference
on Compiler Construction. Springer, 2006, pp. 47–64.

[48] X. Li, Y. Chen, Z. Lin, X. Wang, and J. H. Chen,
“Automatic Policy Generation for Inter-Service Access
Control of Microservices,” in Proceedings of the 30th
USENIX Security Symposium (USENIX), 2021, pp.
3971–3988.

[49] Y. Liu, Y. Xue, D. Wu, Y. Sun, Y. Li, M. Shi,
and Y. Liu, “PropertyGPT: LLM-driven Formal
Verification of Smart Contracts through Retrieval-
Augmented Property Generation,” arXiv preprint
arXiv:2405.02580, 2024.

[50] J. Lu, H. Li, C. Liu, L. Li, and K. Cheng, “Detect-
ing Missing-Permission-Check Vulnerabilities in Dis-
tributed Cloud Systems,” in Proceedings of the 2022
ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS), 2022.

[51] C. Luo, P. Li, and W. Meng, “TChecker: Precise
Static Inter-Procedural Analysis for Detecting Taint-
Style Vulnerabilities in PHP Applications,” in Pro-
ceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2022,
pp. 2175–2188.

[52] W. Ma, S. Yang, T. Tan, X. Ma, C. Xu, and Y. Li,
“Context Sensitivity without Contexts: A Cut-Shortcut
Approach to Fast and Precise Pointer Analysis,” vol. 7,
no. PLDI. ACM New York, NY, USA, 2023, pp. 539–
564.

[53] F. Minna and F. Massacci, “SoK: Run-time security for
cloud microservices. Are we there yet?” Computers &
Security, vol. 127, p. 103119, 2023.

[54] F. Nielson and H. R. Nielson, “Infinitary Control Flow
Analysis: a Collecting Semantics for Closure Anal-
ysis,” in Proceedings of the 24th ACM SIGPLAN-
SIGACT symposium on Principles of programming
languages (POPL), 1997, pp. 332–345.

[55] Y. Ouyang, K. Shao, K. Chen, R. Shen, C. Chen,
M. Xu, Y. Zhang, and L. Zhang, “MirrorTaint: Practical
Non-intrusive Dynamic Taint Tracking for JVM-based
Microservice Systems,” in 2023 IEEE/ACM 45th Inter-
national Conference on Software Engineering (ICSE).
IEEE, 2023, pp. 2514–2526.

[56] N. Redini, A. Machiry, R. Wang, C. Spensky, A. Con-
tinella, Y. Shoshitaishvili, C. Kruegel, and G. Vigna,
“Karonte: Detecting Insecure Multi-binary Interactions
in Embedded Firmware,” in 2020 IEEE Symposium on
Security and Privacy (SP). IEEE, 2020, pp. 1544–
1561.

[57] T. Reps, S. Horwitz, and M. Sagiv, “Precise Interpro-
cedural Dataflow Analysis via Graph Reachability,”

in Proceedings of the 22nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,
1995, pp. 49–61.

[58] E. Ruf, “Context-Insensitive Alias Analysis Reconsid-
ered,” ACM SIGPLAN Notices, vol. 30, no. 6, pp. 13–
22, 1995.

[59] M. Sauwens, E. Heydari Beni, K. Jannes, B. Lagaisse,
and W. Joosen, “ThunQ: A Distributed and Deep Au-
thorization Middleware for Early and Lazy Policy En-
forcement in Microservice Applications,” in Service-
Oriented Computing: 19th International Conference,
ICSOC 2021, Virtual Event, November 22–25, 2021,
Proceedings 19. Springer, 2021, pp. 204–220.

[60] T. Tan and Y. Li, “Tai-e: A Developer-Friendly Static
Analysis Framework for Java by Harnessing the Good
Designs of Classics,” in Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Test-
ing and Analysis (ISSTA), 2023, pp. 1093–1105.

[61] E. Trickel, F. Pagani, C. Zhu, L. Dresel, G. Vigna,
C. Kruegel, R. Wang, T. Bao, Y. Shoshitaishvili, and
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Appendix A.
Assigned CVEs

Table 5 presents the CVEs assigned to us, along with
their vulnerability types.

Appendix B.
Prompt Example

Figure 11 illustrates the prompts used by MScan. Fol-
lowing the ‘Tactic: Provide examples’ section in the best
practices for prompt engineering provided by OpenAI [15],
we have respectively set up SYSTEM, USER, and AS-
SISTANT roles. We assigned the system role to the task
instructions, the user role to example queries in K shots and
the actual query, and the assistant role to example answers in
K shots. For simplicity, some examples and parts of lengthy
code have been omitted.

Appendix C.
Inter-service Communication Mechanism

Table 6 provides details of the modeled APIs for inter-
service communication components. These components in-
clude various commonly used communication components



TABLE 5: Assigned CVEs.

Open-source Apps CVEs1 Type2 Vuln

spring-cloud-dataflow CVE-2024-22263 AFW Inter

yudao-cloud

CVE-2024-36686

AFW

Inter

CVE-2024-30738 Inter

CVE-2024-30739 Intra

paascloud-master
CVE-2024-30743

SQLi
Inter

CVE-2024-30741 Intra

youlai-mall CVE-2024-30742 SQLi Intra

lamp-cloud

CVE-2024-35596 AFW Inter

CVE-2024-30762
SQLi

Intra

CVE-2024-30763 Intra

springblade CVE-2024-30760 SQLi Intra

basemall CVE-2024-35599 AFR Inter

microservices-platform CVE-2024-32240 AFR Intra

mogu blog v2

CVE-2024-35597 SSRF Inter

CVE-2024-30955
XXE

Inter

CVE-2024-36690 Intra

open-mall

CVE-2024-35600

AFW

Inter

CVE-2024-35601 Inter

CVE-2024-35602 Inter

CVE-2024-35603 Inter

CVE-2024-35604 Inter

CVE-2024-35605 Inter

CVE-2024-35606 Intra

CVE-2024-35608 Intra

CVE-2024-35611 Intra

CVE-2024-30744 Intra

CVE-2024-30745 Intra

CVE-2024-30746 SQLi Intra

sitewhere

CVE-2024-37827

SQLi

Inter

CVE-2024-30754 Inter

CVE-2024-30755 Intra

1 For ethical considerations, we anonymized the entire CVE
identifiers.
2 AFW: Arbitrary File Write; AFR: Arbitrary File Read;
SQLi: SQL Injection; XXE: XML External Entity injection;
SSRF: Server Side Request Forgery.

in microservice applications, including popular message
queues and libraries in JDK.

Appendix D.
Case Study

Here, we additionally showcase some interesting inter-
service taint-style vulnerabilities detected by MScan in
highly popular real-world applications.

 Task Description

 K Shots

 Actual query

LLM Response

system

user

assistant
   ["/add/**"]

… 

user

assistant

   ["/portal/**"]

You are a gateway routing rule reader. Read the following routing 
rules of a microservice application and list all that forward requests.
You must follow these rules:
1. You must respond with a JSON list of strings, where each string 
represents a routing path to a microservice.
2. You need to retain the regex content in the rules as-is.
3. You must not include any other information in your response.
4. By default, assume that the rules will forward requests.

      routes:
        - id: add-route
          predicates:
            - Path=/add/**
          filters:
            - AddRequestHeader=X-Request-red
        - id: log-route
          predicates:
            - Path=/log/**
          filters:
            - Status=403

routes:
  portal-route:
    path: /portal/**
    service: portal
  util-route:
    path: /util/**
    filter: deny
    service: util

Figure 11: Example prompt and LLM response.

D.1. AFW in Yudao-Cloud (Service Communica-
tion via OpenFeign [12])

The yudao-cloud [30] is an open-source and widely used
development platform application, with over 15,000 stars
on GitHub. As shown in Figure 12, MScan detected an
arbitrary file write (AFW) vulnerability within the appli-
cation that could lead to the server being taken over by
an attacker. This vulnerability involves two microservices
within the application, i.e., the Portal service and the File
service. In the Portal service, the upload method serves
as a user-accessible entry point, accessible via an HTTP
request to the /upload-material path (lines 1-2). Then,
the user input is passed to the createFile method through
the method invocation (line 3). Specifically, the createFile
method is decorated with the @FeignClient (line 5) and



TABLE 6: Communication modes supported by MScan.

Framework / Lib Type APIs

OpenFeign Sync @FeignClient

RestTemplate Sync

RestTemplate.get

RestTemplate.post

RestTemplate.exchange

gRPC Sync
*ImplBase.*

*BlockingStub.*

JDK Native Sync
URL.openConnection

HttpClient.send

Apache HttpClient Sync HttpClient.execute

Hutool-http Sync
HttpUtil.get

HttpUtil.post

Dubbo Sync
@DubboReference

@DubboService

Kafa Async
KafkaProducer.send

KafkaConsumer.poll

RabbitMQ Async
Channel.basicPublish

Channel.basicConsume

Redis Async
Jedis.get

Jedis.set

MQTT Async
MqttClient.publish

MqttClient.subscribe

@Target (line 7) annotations. The @FeignClient annota-
tion indicates that the methods within this class are intended
to invoke a method within another microservice, and the
@Target annotation specifies the target address for this
inter-service communication, i.e., the fileHandler method
of the File service (line 11). Ultimately, the user input
traverses through inter-service communication and reaches
the sink method writeBytes on line 16 of the File service,
resulting in an arbitrary file write vulnerability. Given the
extensive potential damage posed by this vulnerability, we
reported this critical issue to the developers and received a
CVE (CVE-2024-36686).

D.2. SSRF in mogu blog v2 (Service Communica-
tion via OpenFeign [12])

The mogu blog v2 [11] is a widely popular
microservice-based blog application, earning over
1.6k stars on GitHub. Figure 13 illustrates an SSRF
vulnerability identified by MScan in this application. This
vulnerability spans the Web and Picture microservices. In
the Web microservice, user input starts from index entry
point (line 2) and propagates to the uploadPicsByUrl
method (line 3), which subsequently interacts with the
Picture microservice through OpenFeign (line 8). Within

@RequestMapping("/upload-material")
public Result upload(Material req) {
    return materialService.createFile(req.getFile());
}

@FeignClient
public interface FileApi {
    @Target("/file/create")
    String createFile(@RequestBody File file);
}

@RequestMapping("/file/create")
public String fileHandler(FileDto file) {
    return fileService.uploadFile(file);
}

public String uploadFile(FileDto file) {
    String filePath = getFilePath(file.getPath());
    FileUtil.writeBytes(file.getBytes(), filePath);
    return formatFileUrl(filePath);
}

a) Code snippet in Portal Service

b) Code snippet in File Service
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Figure 12: Arbitrary File Write vulnerability in Yudao-Cloud
application (over 15k stars on Github).

the Picture microservice, the input is passed to the
uploadPictureByUrl method and eventually reaches the
URL class (line 15), resulting in an SSRF vulnerability.
As with other vulnerabilities, we immediately reported
this issue to the developers and received a CVE identifier
(CVE-2024-35597).

@PostMapping("/wechatCheck")
public String index(HttpServletRequest request) {
    ...
    return pictureClient.uploadPicsByUrl(fileVO);
}

@FeignClient("mogu-picture")
public interface PictureFeignClient {
    @Target(value = "/uploadPicsByUrl")
    String uploadPicsByUrl(FileVO fileVO);
}

a) Code snippet in Web Service

b) Code snippet in Picture Service
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@PostMapping("/uploadPicsByUrl")
public String uploadPictureByUrl(FileVO fileVO) {
    return fileService.uploadPictureByUrl(fileVO);
}

public String uploadPictureByUrl(FileVO fileVO) {
    ...
    URL url = new URL(fileVO.getUrl());
}

Figure 13: SSRF vulnerability in mogu blog v2 application
(over 1.6k stars on Github).



Appendix E.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

E.1. Summary

This paper introduces MScan, a static analysis frame-
work designed to detect taint-style vulnerabilities in
microservice-structured web applications. The methodology
tackles key challenges in analyzing these applications by
(1) leveraging an LLM-based approach to identify user-
accessible entry points from gateway configurations, (2)
constructing a service dependency graph (SDG) to model
both inter- and intra-service data flows, and (3) employing
a distance-guided, context-sensitive analysis to improve pre-
cision while reducing overhead. MScan is built on the Tai-e
framework and is effectively evaluated on 30 microservice-
based Java web applications.

E.2. Scientific Contributions

• Creates a New Tool to Enable Future Science.
• Identifies an Impactful Vulnerability.
• Provides a Valuable Step Forward in an Established

Field.

E.3. Reasons for Acceptance

1) The paper presents MScan, the first tool specifically
designed for vulnerability detection in Java-based mi-
croservices. While the submitted version does not in-
clude a link to a public repository, the authors have
committed to releasing a prototype of MScan upon
publication.

2) MScan identified 59 previously unknown vulnerabil-
ities across 25 open-source and 5 commercial Java-
based applications. Following responsible disclosure,
31 CVEs were assigned, demonstrating the tool’s ef-
fectiveness in uncovering impactful security issues.

3) The paper advances taint-style vulnerability detection,
addressing key challenges in analyzing Java-based dis-
tributed microservice applications. The approach tack-
les complex challenges in this domain by integrating
LLM-based entry point identification, service depen-
dency graph construction, and distance-guided context-
sensitive analysis. An extensive ablation study pro-
vides strong empirical support for the proposed design
choices.

E.4. Noteworthy Concerns

1) The dataset is limited to 30 Java-based applications,
which may not fully represent the broader microservice

ecosystem. Some design choices may be tailored to this
specific set of applications, potentially limiting the gen-
eralizability of the proposed solution to other platforms,
programming languages, or microservice architectures.


