
Backporting Security Patches of Web Applications:
A Prototype Design and Implementation on Injection Vulnerability Patches

Youkun Shi1, ¶, Yuan Zhang1, ¶, Tianhan Luo1, Xiangyu Mao1, Yinzhi Cao2, Ziwen Wang1, Yudi Zhao1,
Zongan Huang1, and Min Yang1

1School of Computer Science, Fudan University, China
2Department of Computer Science, Johns Hopkins University, USA

¶co-first authors

Abstract
Web vulnerabilities, especially injection-related ones, are

popular among web application frameworks (such as Word-

Press and Piwigo), which can lead to severe consequences

like user information leak and server-side malware execution.

One major practice of fixing web vulnerabilities on real-

world websites is to apply security patches from the official

developers of web frameworks. However, such a practice is

challenging because security patches are developed for the

latest version of a web framework, but real-world websites

often run an old version due to legacy reasons. A direct

application of security patches on the old version often fails

because web frameworks, especially the code around the

vulnerable location, may change between versions.

In this paper, we design a security patch backporting frame-

work and implement a prototype on injection vulnerability

patches, called SKYPORT. SKYPORT first identifies safely-

backportable patches of injection vulnerabilities and web

framework versions in theory and then backports patches to

corresponding old versions. In the evaluation, SKYPORT iden-

tifies 98 out of 155 security patches targeting legacy injection

vulnerabilities, which can be backported to 750 old versions

of web application frameworks. Then, SKYPORT successfully

backported all of the aforementioned backportable patches to

corresponding old versions to correctly fix vulnerabilities. We

believe that this is a first-step towards this important research

problem and hope our research can draw further attention

from the research community in backporting security patches

to fix unpatched vulnerabilities in general beyond injection-

related ones.

1 Introduction
Patching is a common practice to apply software code

differences between two versions for an update. While

patching continues to be the major tactics of fixing web appli-

cation vulnerabilities, the major challenge in the real-world

is practical deployment. For example, after three months

since the patch release of CVE-2018-7600, an arbitrary code

execution vulnerability of Drupal, researchers still found

that around 115,000 websites were unpatched, making them

vulnerable to any attackers on the web [2].

The reasons for leaving vulnerable websites unpatched are

complicated. Putting aside these human-related issues, one

major problem is that the patch cannot be directly applied

to vulnerable websites due to a web application version

mismatch. Specifically, web application developers, in most

cases, just come up with a patch for the latest application

version, but website maintainers often run an old version

due to legacy reasons, e.g., the application does not have

an automated update interface or the website has some

customized code tailored made for the old version. Therefore,

one practical problem facing the website maintainer is

to apply the patch targeting the latest version upon their

own website in an old version. According to several prior

studies [65, 66], they are often reluctant of doing so due to

lacking technical experience and being afraid of breaking

website functionalities.

Backporting security patches. The practical issue on

cross-version patch deployment can be formalized as a

research problem, i.e., how to backport a given security

patch for a particular vulnerability to a target, old version

of the web application, or for short, we call it security patch
backporting. The general goals of security patch backporting

are to maintain two important properties of web application:

(i) security, i.e., defending against the vulnerability-related

attacks, and (ii) backward compatibility, i.e., incurring no

functionality issues.

Although the security patch backporting problem is impor-

tant, surprisingly there is not much work in the literature

to solve the problem. Specifically, there is a patent [51]

on bug patch backporting, but it can only fix earlier bugs

if no patching conflicts exist. A Ph.D. dissertation [69]

from Singapore Management University discusses patch

backporting, but the process is still largely manual and without

security or functionality guarantees.

While the specific problem to backport security patches

is not thoroughly studied in the past, people have studied

the general problem of vulnerability detection and patch-

ing. Based on our study, none of them can be used to

backport security patches. One popular research direction

is the detection of zero-day security vulnerabilities via code

similarity [34,37,44,45]. For example, existing works propose

patch-enhanced vulnerability detection [74], but they cannot

pinpoint the accurate vulnerability location for patching let

alone ensure the security and functionality of backporting.

Another research direction is automatic fixes of existing

vulnerabilities [26,27,31,36,43,47,48,73]. For example, many

researches can automatically generate patches given exploit

code [31] or many normal test cases [36, 48, 73], which may

not exist for the backporting problem. For another example,

hot-patching frameworks [18,19,56] aim to apply the patching

semantics to the vulnerable code without requiring users

to explicitly updating their software, while the backporting

problem does not assume the existence of a patch for an old

version.

Let us describe what a security patch is and why back-

porting is feasible for many old versions of web applications.

Intuitively, a security patch is to update the vulnerable logic

for given inputs in a web application with a safe logic. Then,

backporting is possible because the same vulnerable logic

may also exist in a target old version of the web application.

Therefore, we can apply the safe logic from the security patch

to the old version and replace the vulnerable logic.

While security patch backporting is intuitively simple, the

challenges come from two aspects, the patch, and the target

old version. On one hand, the patch may not just update the

vulnerable logic but also introduce other new functionalities,

e.g., adding new inputs. Such new functionalities may not

work on the target old version, leading to compatibility issues.

More importantly, they also bring difficulties in pinpointing

the exact code location for applying the patch on the target old

version. On the other hand, the target version may not contain

exactly the same vulnerable logic as the patch aims to fix. For

example, although the target version is also vulnerable, some

later versions added new inputs to the vulnerable logic and

thus the safe logic provided by the patch is not applicable to

the target version.

In this paper, we propose two novel concepts, called a

safely-backportable patch (SBP) and a safely-backportable
version (SBV), to tackle the aforementioned two challenges.

An SBP is a newly-generated patch that only contains safe,

deterministically-computable safe logics extracted from the

original patch to replace the vulnerable logics; and an SBV is

a special target version that has the same vulnerable logics

targeted by the SBP. The combination of SBP and SBV achieves

the backporting goals of security and backward compatibility,

because an SBP removes vulnerability-unrelated fixes and an

SBV ensures that the vulnerable logic in the target is either

exactly the same as the one targeted by the original patch.

Specifically, our proposed backporting with SBP and SBV is

a three-pronged approach. First, it determines whether the

original patch is backportable and then generates an SBP

from the post-patch version with the original patch. Second,

it checks the target version and ensures that the version is an

SBV. Lastly, it pinpoints the vulnerability location in the target

version and applies the SBP.

SKYPORT: Injection vulnerability patch backporting
framework. While the three-pronged backporting is intuitive

and effective, the major challenge is how to represent

both the safe and vulnerable logic of a web application

in a formal, comparable way. Fortunately, a popular type

of web application vulnerabilities, i.e., injection-related

ones, has one explicitly-defined dangerous function called

the sink, such as echo for cross-site scripting (XSS) and

move_uploaded_file for arbitrary file upload. More

importantly, the same sink function usually exists in all three

related versions, i.e., pre-patch, post-patch, and target. This

practical observation enables our design of SKYPORT, a

general framework to automate security patch backporting

for injection vulnerabilities in legacy web applications.

Given this practical observation, SKYPORT represents the

safe and vulnerable logic of web applications as a concept

called sink capability. Specifically, a sink capability is a

set of pairs that represents all possible data-flows to the

vulnerable parameter of the sink function. The first item of

a pair is a symbolic expression of one data-flow to the sink

function parameter and the second item is the control-flow

constraint set of the data-flow. The major advantage of this

representation of vulnerable and safe logic as a sink capability

is an easy comparison among different versions.

We implemented a prototype of SKYPORT and evaluated

it using 155 patches against real-world CVEs from ten CMS.

SKYPORT successfully verifies that 111 original patches can

be exported to SBPs and that 750 versions are SBVs, which

map back to 98 out of 111 SBPs. Then, SKYPORT successfully

applies all 98 SBPs on 750 SBVs with backward compatibility

and minor performance overhead. As a comparison, we find

that the original patches can only be applied on 455 target

versions directly without any code conflict. Furthermore, only

39 versions can be fixed by upgrading the website using the

official upgrade API with PHP requirement guarantee. These

results clearly demonstrate the benefits of SKYPORT.

In all, this paper makes the following major contributions.

• We propose safely backportable patch as a new perspective

to deploy security patches on web applications. Our solution

supports patching across multiple versions, provides the

strong guarantee of security and functionality, and requires

minimal deployment efforts.

• We design SKYPORT, which can verify whether a security

patch can be transformed to an SBP and whether it can be

applied to a given version, called SBV.

• We evaluate SKYPORT with 155 real-world vulnerabilities,

and generates 98 SBPs that can be applied to 750 SBVs. The

results show that SBPs effectively prevents vulnerability

exploitation with minor performance overhead and does not

affect the normal execution.

b) Safely Backportable Patch for CVE-2018-10572 (OpenEMR)

a) Official Patch for CVE-2018-10572 on OpenEMR 5.0.0.6

c) Deployed Safely Backportable Patch on OpenEMR 5.0.0.5

function convert_safe_file_dir_name($label){
 return preg_replace('/[^A-Za-z0-9_.-]/', '_', $label);
}

function safe_fopen($bp_globals_oe_site_dir, $bp_get_template){
 $template_dir = $bp_globals_oe_site_dir . "/letter_templates";
 return fopen("$template_dir/" .
 convert_safe_file_dir_name($bp_get_template), 'r');
}

 <?php
+ $bp_get_template = $_GET['template'];
+ $bp_globals_oe_site_dir = $GLOBALS['OE_SITE_DIR'];
 $sanitize_all_escapes = true;
 $fake_register_globals = false;

 include_once("../globals.php");
 include_once($GLOBALS['srcdir'] . "/patient.inc");
 $template_dir = $GLOBALS['OE_SITE_DIR'] . "/letter_templates";
 ...
 $fh = fopen("$template_dir/".$_GET['template'], 'r');
+ $fh = safe_fopen($bp_globals_oe_site_dir, $bp_get_template);
 ...
 ?>

1
2
3
4
5
6
7
8
9

10
11
12

13
14

 <?php
+ require_once("../globals.php");
+ require_once($GLOBALS['srcdir'] . "/patient.inc");

 use OpenEMR\Core\Header;

 include_once("../globals.php");
 include_once($GLOBALS['srcdir'] . "/patient.inc");

 $template_dir = $GLOBALS['OE_SITE_DIR'] . "/letter_templates";
 ...
 $fh = fopen("$template_dir/".$_GET['template'], 'r');
+ $fh = fopen("$template_dir/" .
 convert_safe_file_dir_name($_GET['template']), 'r');
 ...
 ?>

1
2
3
4
5
6
7
8
9

10
11
12
13
14

-

-
-

-

1
2
3
4
5

6
7

Figure 1: Motivating Example of Patching CVE-2018-10572.

2 Overview
In this section, we first illustrate a motivating example and

then describe the threat model of SKYPORT.

2.1 A Motivating Example

Figure 1 (a) shows an arbitrary file read vulnerability (CVE-

2018-10572) in OpenEMR before version 5.0.1 [5] and

its original patch is shown as the diff format. Line 11 is

the vulnerable location, which reads a file with user inputs

$_GET[‘template’] without sanitization and Line 12 is the

key patched code of the vulnerability by sanitizing the user

input. Note that the developer only fixes the latest version

but not prior ones. Here we explain why it is challenging to

backport this security patch. First, the patch not only contains

the code to fix the vulnerability (i.e., Line 12) but also other

vulnerability-irrelevant code (i.e., the addition of Lines 2 and 3

Table 1: Dataset for CVEs with their vulnerability types.

Vulnerability Type # of CVEs
Server-Side XSS 96

SQL Injection 21

Arbitrary File Read/Write/Delete/Include 14

Command/Code Injection 7

Open Redirect 4

Directory Traversal 4

Executable File Upload 4

Server-Side Request Forgery (SSRF) 4

PHP Object Injection 1

Total 155

and the deletion of Lines 7 and 8), which may bring backward

compatibility issues. Second, it is challenging to apply the

patch to a target version 5.0.0.5 as shown in Figure 1 (c),

because Line 5 in Figure 1 (a) for pinpointing the patch

location has not been introduced in the target version.

Next, we describe how SKYPORT backports the patch

from OpenEMR 5.0.0.6 to 5.0.0.5. First, SKYPORT gen-

erates a safely-backportable patch (SBP) as shown in Fig-

ure 1 (b), which contains the entire safe logic including the

convert_safe_file_dir_name() function and removes

vulnerability-irrelevant code. Second, SKYPORT checks that

the version 5.0.0.5 is a safely-backportable version (SBV)

because the vulnerable logics of both versions, i.e., those

represented as sink capabilities at Line 11 of Figure 1 (a) and

(c), are the same. Lastly, SKYPORT applies the generated SBP
to SBV in Figure 1 (c) by adding two backup code (Lines 2

and 3) and replacing Line 11 with Line 12.

2.2 Threat Model

In this subsection, we describe the threat model of SKYPORT.

SKYPORT assumes that the victim is a website running

an old-version web application without a targeted patch

for a vulnerability. The adversary is a normal user of the

web application that sends attack requests to exploit the

vulnerability. Broadly speaking, security patch backporting

could cover any server-side web vulnerabilities. At the same

time, as a pioneer work, we consider injection vulnerabilities
as in-scope, which include the following two factors.

• Sink function. A sink function is a server-side danger-

ous function. Take server-side XSS for example. The

sink function is echo because if its input contains user-

controlled contents and is not sanitized, arbitrary HTML

and JavaScript code may be outputted to the client.

• Critical parameter. A critical parameter is a parameter of

the sink function that may lead to dangerous behavior. The

first and only parameter of echo is a critical parameter.

For a better understanding, we also list all the studied

injection vulnerabilities and the corresponding total number

of historical CVEs in Table 1.

3 Backporting Security Patches
In this section, we describe how to represent vulnerable logics

of web applications and then the three-pronged backporting.

In each subsection, we first generalize our approach on any

security patches and then narrow them down to injection ones.

3.1 Vulnerable Logic Representation

The vulnerable logic of a web application, from a high level,

can be represented as all the control- and data-flows that

are related to given user inputs. That is, a well-crafted, mali-

cious input may cause execution of the vulnerable program

following specific control- and data-flow paths, leading to a

malicious consequence. Note that the representation of all

control- and data-flow paths for given inputs is a generally

hard problem of static analysis, and that is why we focus on

injection vulnerabilities as a start of backporting.

3.1.1 Vulnerable Logic for Injection Vulnerabilities

In this part, we describe vulnerable logic representation for

injection vulnerabilities. Because injection vulnerabilities

have a sink and its corresponding critical parameter, all the

control-flows related to the vulnerable logic end up with the

sink and all the data-flows end up with the critical parameter.

If we call all control-flow paths leading to the sink function as

sink flows and represent them as (f low1, f low2, ...), we can

simplify the general vulnerable logic representation with the

following two definitions for a given sink flow f lowk.

• Reaching condition (RC). A RCf lowk is a set of all the

control-flow conditions involved in a f lowk.

• Data-flow expression (DE). A DE f lowk is a symbolic

expression of the critical parameter involved in a f lowk.

Then, we put all RCs and DEs of different sink flows

together and define the union set ({< RCf low1
,DE f low1

>, <
RCf low2

,DE f low2
>,...}) as a sink capability, which represents

the vulnerable logic of an injection vulnerability.

Let us consider a simple code snippet below as an example

in illustrating sink capability.

if ($condition) $value = $input1 else $value = $input2
sink_func($value + 1)

There are two sink flows: one from the i f branch

(f low1) and the other the else branch (f low2). RCf low1
is

{$condition} and DE f low1
is $input1 + 1; and RCf low2

is

{!$condition} and DE f low2
is $input2 + 1. Then, we can

come up with the sink capability based on all the RCs and

DEs, which is an efficient, easy-to-compare representation of

vulnerable logic.

3.2 Three-pronged Backporting

In this subsection, we describe our three-pronged backporting

approach. We start from two novel concepts, SBP and SBV.

• A Safely Backportable Patch (SBP) is a patch that con-

tains the entire, deterministically-computable safe logic

by restricting the original vulnerable logic without adding

new functionalities. We denote the property of SBP as

PSBP, which ensures backward compatibility of the web

application with backported patches.

• A Safely Backportable Version (SBV) is a target old version

that contains exactly the same vulnerable logic as the

original official patch is targeting. We denote the property

of SBV as PSBV , which ensures the security of the web

application with backported patches.

Now, let us focus on injection vulnerabilities and describe

how to use sink capability to check both PSBP and PSBV in

our three-pronged approach. We have three versions here: a

pre-patch (pre), a post-patch(post), and a target old (target).

Step I: SBP Verification and Generation. In this step, we need

to check whether the original, official patch is backportable

and convert it into an SBP. Specifically, we check the follow-

ing sub-properties based on sink capability.

• PSBP-a: RCpost
f lowk

is a subset of RCpre
f lowk

for every f lowk. This

property prevents SBPs from introducing unknown control-

flows to the post-patch version, because it may break the

functionality of the target version.

• PSBP-b: {x | x = DE post
f lowk

} is a subset of {x | x = DE pre
f lowk

}
for every f lowk. This property prevents SBPs from intro-

ducing unknown data expressions to the post-patch version,

because it may also break the functionality of the target

version.

• PSBP-c: Both RCpost
f lowk

and DE post
f lowk

are deterministically
computable for every f lowk. This property ensures the

functionality of the target version when SBP includes the

entire safe logics in recomputing all RC and DE. In other

words, this property excludes functions that may return

non-deterministic values. e.g. time() and rand().

These three sub-properties guarantee that the deployment

of the an SBP does not affect the normal functionality of the

target application, because it does not introduce new inputs

to the sink function.

Step II: SBV Verification. In this step, we check whether the

target version is an SBV using the following sub-properties

based on sink capability.

• PSBV -a: RCpre
f lowk

is the same as RCtarget
f lowk

for every f lowk.
This property ensures that there are no additional vulnerable

control-flows in the target version.

• PSBV -b: DE pre
f lowk

is the same as DEtarget
f lowk

for every f lowk.
This property ensures that there are no additional vulnerable

data expressions in the target version.

These two sub-properties guarantee the security when

applying an SBP upon an SBV, because the vulnerable logics

between two versions are exactly the same.

Step III: Patch Deployment. This step is to automatically

deploy SBP upon SBV for backporting. Although this is hard

for general web vulnerabilities, the deployment for injected

vulnerabilities boils down to pinpoint the target vulnerable

sink function based on sink capability matching.

Sink
functions

Step I: SBP Verification and Generation

Official patch Post-patch version

Pre-patch version

Target version

Sink
Capability
Extraction

SCpost

SCpre

SCtarget

Backportable
Analysis

SBP
Analysis

SBV
Analysis

Patch
Deployment

SBP

SBV

Patched target
version

Step II: SBV Verification

Step III: Patch Deployment

Sink
functions

Sink
functions

applying

Patch
Affection
Analysis

Figure 2: Workflow of SKYPORT. � patch affection analysis locates the affected sink functions by an official path and then sink
capability extraction generates their sink capabilities. Next, SBP analysis determines whether the sink functions are backportable

and generates SBP. � SKYPORT locates the sink functions of a target version and generates sink capabilities. Then, SBV analysis
checks whether it is an SBV. � Patch deployment patches the SBV with the generated SBP.

4 SKYPORT Design
In this section, we present the design of SKYPORT in

Figure 2 with three steps clearly separated and described. The

detailed design of SKYPORT is based on the code property

graph [12] (CPG). Now, instead of describing the three steps

of SKYPORT, we organize the section via four important

components of SKYPORT, which sometimes span across

multiple steps with different inputs and outputs. Here is a

brief overview of these components:

• Patch Affection Analysis extracts sink functions that are

affected by the official patch from the pre-patch version,

i.e., those vulnerable ones that might be fixed by the patch.

• Sink Capability Extraction accepts a list of sink functions

and a given version of the web application, performs

symbolic tracking, and outputs sink capabilities (i.e., reach-

ing conditions and data-flow expressions) for all the sink

functions.

• Backportable Analysis checks SBPs and SBVs based on sink

capabilities and generates SBPs if the check passes.

• Patch Deployment applies SBP upon SBV and fixes the

vulnerability on the target old version.

4.1 Patch Affection Analysis

The purpose here is to extract sink functions affected by the

official patch, thus being candidates for belonging to the target

vulnerability of the patch. The key here is a forward taint

analysis that starts from patch changes, extracts patch-affected

code, and then identifies affected sink functions. We describe

the analysis via two steps.

First, SKYPORT performs forward taint analysis from the

patch changes and iteratively locates the affected lines via

querying the program dependency graph (PDG) with affected

variables in affected lines. The analysis includes three types

of statements that may affect the reaching condition or the

data-flow expression of a sink function and excludes other

unrelated statements. Specifically, these three types of state-

ments include assignment (affecting data-flow expression),

conditional (affecting reaching condition), and exit (affecting

reaching condition).

Second, SKYPORT identifies sink functions from the

affected lines extracted from the previous step. Specifically,

the identification is based on a human-created map (as

shown in Table 2) between sink functions and vulnerability

types, e.g., fopen() vs. arbitrary file read. It is worth noting

that some sink functions may be defined or customized

by a developer. In such cases, SKYPORT performs code

reachability analysis to finds the final sink function. Besides,

due to the conservativeness of static analysis, SKYPORT may

have false positives in extracting sink functions. Fortunately,

these false positives can be removed in the following steps

because they have the same sink capability in the pre-patch

version and the post-patch version.

4.2 Sink Capability Extraction

Sink Capability Extraction accepts a list of sink functions

and a given version of web application, and extracts the sink

capability (SC) of the given version for all the provided sink

functions. Specifically, SKYPORT collects all the control-flow

paths to the sink function, calculates the sink’s Reaching

Conditions (RC) and Data-flow Expressions (DE) along each

path via symbolic tracking, and then unions them as SC.

Let us describe these steps in details. First, SKYPORT

performs forward path exploration to follow all control-flow

edges from either an entry point or a caller function until a

provided sink function. During the exploration, SKYPORT

also checks whether there exists an exit statement, such as

die(), and stops the exploration. If SKYPORT encounters a

loop, it unrolls loop once to avoid path explosion. Second,

SKYPORT calculates both RC and DE via symbolic tracking

upon Tree Address Code (TAC) formulas. Specifically,

SKYPORT first collects all the RC and DE, and identifies three

types of symbolic variables, which are global variables, sink

function caller’s parameters, and external variables defined in

other PHP files for the calculation. Lastly, SKYPORT union

RC and DE for all the control-flow paths of a sink function

as the SC for the sink function.

4.3 Backportable Analysis

In this subsection, we first describe three building blocks of

the backportable analysis of SKYPORT and then present how

to perform SBP and SBV analysis using these building blocks.

4.3.1 Building Blocks of Backportable Analysis

The key of backportable analysis is to compare different

SCs of different sink functions belonging to web application

versions and ensure their determinism. That is, naturally we

have two building blocks, one for SC comparison and one for

determinism.

Sink Capability Analysis In this part, we describe one

building block, i.e., our sink capability analysis. We first

present the analysis of reaching condition and data-flow

expression and then the combination of these two in sink

capability analysis.

• Reaching Condition (RC) Analysis. We model RC of a

given sink function as Equation 1.

RCsink = RCf low1
∨RCf low2

∨ ...∨RCf lown (1)

where f lowi is a control-flow path leading to the sink,

RCf lowi is the logic and operation of all the conditions along

f lowi, i.e., RCf lowi =C1 ∧ ...∧Ck, and Ck is one condition

along f lowi. Then, the Reaching Condition Analysis boils

down to Boolean Algebra and the check of whether a certain

condition holds. For example, the equivalence of two RC is

a check of RCa = RCb, and whether RCa is a subset of RCb
equals to a check of RCa = RCa ∧RCb.

• Data-flow Expression (DE) Analysis. SKYPORT performs

a conservative Data-flow Expression Analysis by checking

whether common sanitization functions, such as trim()
and intval(), exist between two DEs. If yes, SKYPORT

considers one DE is a subset of another. We understand that

it may bring false negatives, but in practice this is very rare.

Now we describe how SKYPORT compares SCs using RC
and DE analysis. Say there exists two SCs, i.e., SCa and

SCb. SKYPORT first performs RC analysis by comparing

each RC of a sink flow in SCa with all RCs in SCb and

finding exact matches. If an exact match cannot be found

for a RCi in SCa, SKYPORT finds a RC in SCb that is a

subset of RCi. After SKYPORT finds matches for all RCs in

SCa and SCb, SKYPORT performs DE analysis to determine

whether corresponding DEs of matched RCs have a subset

relationship.

Expression Re-computable Analysis. In this part, we

describe the other building block, i.e., Expression Re-

computable Analysis. SKYPORT determines whether all

data-flow expressions in the sink capability are the same

if being recomputed again. The reason for this analysis is

that SKYPORT includes the entire safe logic in SBP, which

recomputes the safe logic from user inputs. Specifically,

SKYPORT checks whether DEs contain four types of

non-deterministic operations, which are network-related

operations (e.g., curl_exec()) , database manipulation

operations (e.g., mysql_query(), pg_query()), file

operations (e.g., fwrite(), unlink()) and operations that

return dynamic values (e.g., time(), rand()). If none of

the operations exists, SKYPORT considers the target DE as

re-computable.

4.3.2 SBP and SBV Analysis

In this part, we describe how to perform SBP and SBV analysis

using the two building blocks described in §4.3.1.

SBP Analysis. The purpose of SBP analysis is to check

whether the original patch is backportable and then generate

an SBP if so. First, SKYPORT compares the sink capabilities

of those output by Patch Affection Analysis between pre-

patch and post-patch versions (i.e., SCpre and SCpost). If SCpost
is a subset of SCpre as determined by the Sink Capability

Analysis, i.e, satisfying both PSBP-a and PSBP-b, SKYPORT

considers it as a candidate. Second, SKYPORT performs

Expression Re-computable Analysis to ensure that data-flow

expressions in all sink capabilities are deterministic, i.e.,

satisfying PSBP-c. If so, SKYPORT determines that the original

patch is backportable.

Next, SKYPORT generates a safe sink function (e.g.,

safe_fopen() in Figure 1 (c)) and replaces the original

sink as the SBP. The safe sink function includes all the sink

flow paths in SCpost into a safe-sink function and recomputes

the critical parameter(s) for each sink flow. If some reaching

conditions are filtered in the original official patch, SKYPORT

uses a die() function to directly abort the execution in SBP.

One thing worth noting here is the handling of loop because a

loop is only unrolled once during Sink Capability Extraction.

That is, SKYPORT does not recover the original loop structure

when generating SBP. Our high-level idea is to recalculate the

sink capability of the post-patched version by encapsulating

the loops as functions (sink irrelevant statements are not

included) and use the recalculated SCpost for SBP generation.

Specifically, there are three cases based on whether patch

modification lines (called patch below for short) and a target

sink are inside or outside a loop:

• Patch [inside] and Sink [inside]. SKYPORT treats the loop

block as a function and calculates SC inside the function.

• Patch [outside] and Sink [inside]. SKYPORT treats the loop

block as the sink function and replaces the original sink in

calculating SC.

• Patch [inside/outside] and Sink [outside]. SKYPORT

encapsulates the loop as a function to calculate SC.

SBV Analysis. The purpose of SBV analysis is to check

whether a given target old version is backportable. First,

SKYPORT locates the sink functions at the target version

according to their function and file names, and generates sink

capabilities for them. Second, SKYPORT compares the sink

capabilities of all the sink functions of the pre-patch and target

versions using the Sink Capability Analysis. Specifically, if

every sink function has a match in two versions and SCpre
and SCtarget are exactly the same, i.e., satisfying both PSBV -
a and PSBV -b, SKYPORT considers this target version as

backportable and outputs this version as SBV.

4.4 Patch Deployment

Patch Deployment applies an SBP upon an SBV by a direct

modification upon the web application source code. There

are two steps. First, SKYPORT replaces the sink function

with the generated safe sink function at a target version.

There are two types of replacement: (i) function replacement

and (ii) parameter replacement. Function replacement is the

default, which replaces the sink function with a new, safe

function; Parameter replacement is an alternative to function

replace when the sink function cannot be replaced, e.g., being

a PHP keywords like include and return. If so, SKYPORT

replaces the critical parameter with a safe function, e.g.,

include safe_include(). Note that SKYPORT will check

name conflicts to avoid function names being used by the web

application.

Second, SKYPORT backups variables related to the sink

function, i.e., particularly global variables, sink function

caller’s parameters, and external variables, at the beginning of

the vulnerable code and then uses them in the generated safe

sink function. Consider our motivating example in Figure 1

again. SKYPORT backups both $_GET[‘template’] and

$GLOBALS[‘OE_SITE_DIR’]s at the beginning of the PHP

file, i.e., Lines 2 and 3 in Figure 1 (b), and then uses them in

the safe sink function.

5 Implementation and Dataset
In this section, we first describe our prototype implementation

and then present the datasets for patch backporting.

5.1 Prototype Implementation

We implemented a prototype of SKYPORT for PHP applica-

tions. Our patch affection analysis module and sink capability
extraction module are based on PHPJoern [12] and Neo4j [4].

Table 2 shows the mapping between vulnerability type and

sink function used in the patch affection analysis. Our patch
deployment implementation relies on the source code and

CPG mapping provided by PHPJoern so that SKYPORT

can locate the exact line number of source code based on

CPG node. Note that because the current implementation of

PHPJoern does not resolve the targets for dynamic calls with

Table 2: Mapping between Vulnerability Types and Sink

Functions.

Vulnerability Type Potential Sink Function

Server-Side XSS echo, print, print_r

SQL Injection

pg_query, pg_send_query, pg_prepare,

mysql_query, mysqli_prepare, mysqli_query,

mysqli_real_query

Arbitrary File Read file, file_get_contents, readfile, fopen

Arbitrary File Write file_put_contents, fopen, fwrite

Arbitrary File Delete unlink, rmdir

Arbitrary File Include include, include_once, require, require_once

Command Injection
exec, passthru, proc_open, system, shell_exec,

popen, pcntl_exec

Code Injection
fopen, file_get_contents, fwrite, fputs,

eval, create_function, assert, array_map

Directory Traversal fopen, dir, dirname, opendir, scandir

Executable File Upload copy, fopen, move_uploaded_file, rename

SSRF curl_exec, file_get_contents, fsockopen

Open Redirect header

PHP Object Injection unserialize

non-unique function names, we implemented a class hierarchy

analysis [29,33,78] to optimize the call graph construction of

such dynamic functions and improve the accuracy in locating

sink functions.

Other than the major functionality improvement, we also

fix three major bugs of PHPJoern for SKYPORT.

• or throw syntax. We added parsing and code property

graph (CPG) generation supports for the or throw syntax,

which is used by some web vulnerabilities, e.g., CVE-2015-

5078.

• Constant condition in switch statement. We fixed the

incorrect control-flow edges generated by PHPJoern, when

the condition of switch is a constant value.

• Data-flows for foreach’s iterable_expression. We added

data-flow paths between the foreach’s iterable_expression

and the internal variables in foreach block.

Other than PHPJoern, we also reused and extended the TAC

(Three-Address Code) representation and the related transfor-

mation code from NAVEX [10]. Our extension of NAVEX

includes new AST node types (e.g., AST_MAGIC_CONST) and

new AST operation symbols (e.g., BINARY_SHIFT_RIGHT
for >>, BINARY_SHIFT_RIGHT for <<). We used Wolfram-

Script [7] for bool computation in the backportable analysis
module.

5.2 Dataset

In this subsection, we describe our dataset used in the

evaluation, which has 155 patches (i.e., 155 pre-patch and

post-patch versions) and 1,526 vulnerable target versions. We

break down all the patches based on the CVE types in Table 1:

Server-side XSS is the most popular vulnerability and PHP

Object injection is the least. We also break down all the

patches based on web application types in Table 3: WordPress,

Table 3: Dataset of target CVEs and PHP applications.

CMS Name # CVEs # Versions # <CVE,Version>
WordPress 34 187 430

PHPMyAdmin 29 108 257

PrestaShop 11 34 101

RoundcubeMail 8 48 76

Mantisbt 24 74 198

Piwigo 11 37 108

OpenEMR 11 20 70

phpipam 3 6 13

MISP 9 55 118

LimeSurvey 15 82 155

Total 155 651 1,526

one popular web application, has the most number of CVEs

and corresponding vulnerable target versions.

We now describe how we manually generate the dataset

via two phases. The dataset generation takes two authors 20

human hours in total. First, we collect patches and CVEs

by selecting ten most popular PHP projects on Github with

>1K starts as shown Table 3 and their corresponding CVEs

and patch commits from 2014 to 2020. In total, we obtain

269 CVEs and patches. Then, we manually check all the 269

CVEs and patches and exclude 114 CVEs because they are

either out-of-scope (i.e., not injection vulnerabilities), with

incorrect patch commit URLs, or outside our patch model

(e.g., removing sink functions or modifying configuration

like .htaccess). A detailed breakdown can be found in Table 4.

Second, we collect vulnerable target versions via two methods:

(i) checking the vulnerability information (e.g., the declared

affected version range) in NVD [3] and MITRE [1], and (ii)

manually analyzing the application source code of affected

versions and removing those with errors in the database, e.g.,

without corresponding files of the sink functions.

5.2.1 Dataset Statistics

In this part, we illustrate some statistics of our dataset and

further explain why security patch backporting is generally

challenging.

First, we find that 98 out of 155 patches contain vulnerabil-

ity irrelevant modifications. Some modifications may lead to

a backward compatibility issue and some may lead to a patch

deployment issue. We summarize them into three categories:

• Functionality Modifications. Security patches may change

existing functionality or add new functionality while fixing

vulnerabilities. For instance, the security patch for CVE-

2014-7146 not only fixes the arbitrary PHP code vulnera-

bility but also adds the function to retrieve the file contents.

• Variable or Function Name Modifications. Some security

patches modify variable or function names. For example,

the security patch for CVE-2014-1609 changes many vari-

able names, such as $result to $t_result and $t_users
to $t_count.

• Miscellaneous Modifications. Some security patches mod-

ify version numbers, add comments or adjust the indentation

Table 4: The reasons for excluding some CVEs.

Reason for Exclusion Count
Vulnerability type not in scope 88

No patch file 18

Does not fit patch model 8

Total 114

Table 5: Overall Experiment Results.

Patches Target Versions Success Rate

Phase 0: Dataset 155 1,526 N/A

Phase 1: SBP Verif.&Gen. 111 1,137 71.61

Phase 2: SBV Verif. 98 750 65.96

Phase 3: SBP→SBV 98 750 100.00

when fixing vulnerabilities, such as CVE-2018-15139,

CVE-2017-16510, and CVE-2019-16220.

Second, let us look at the target versions. We find that 1,071

of 1,526 target versions have code location changes around

the patch, which lead to a failure when directly applying the

original patch. At the same time, we also find that 563 of 1,526

target versions do not have exactly the same vulnerable logic

as the version that the original patch is targeting. Note that

these target versions are not SBVs, thus not being backportable.

6 SKYPORT Evaluation
In this section, we present the evaluation of SKYPORT from

three aspects: backporting results, comparison with state of

the art, and performance overhead.

6.1 Results

In this subsection, we first give an overview of the results and

then break them down into details by different steps.

6.1.1 Results Overview

Table 5 shows an overview of SKYPORT’s results in each

step. The first metric is the success rate, which indicates

the percentage of correctly-verified SBPs, SBVs, and patch

deployment. The result shows that SKYPORT successfully

achieves its tasks in each step with 100% rate, i.e., the

number in each step matches our manual analysis of SBPs

and SBVs with no false positives and negatives. Here are

the numbers of remaining patches and target versions after

each step. In the first step, SKYPORT verifies that 111 out

of 155 security patches are backportable; in the second step,

SKYPORT verifies that 750 target versions are SBVs, which

further reduces the number of SBPs to 98; in the third step,

SKYPORT successfully deploys all 98 SBPs upon on 750 SBVs

and fixes the corresponding vulnerabilities.

Note that the evaluation results on success rates of SBPs

and SBVs are performed by five analysts that are independent

of the paper authors. The total inspection takes about 175

human hours. The inspection of each SBP and SBV involves at

least two analysts and if they disagree on the results, we will

include a third analyst and let them have a discussion to reach

a consensus.

post-patch

pre-patchecho '<a href="https://' . $_SERVER['HTTP_HOST']
. $_SERVER['REQUEST_URI'] . '" title="' . '...';

echo '<a href="https://' . $_SERVER['HTTP_HOST']
. $this->createUrl("admin/globalsettings/sa") . '" title="' . '...';

if (0 == $t_type || empty($t_matches['script']) ||
 3 == $t_type && preg_match('@(?:[^:]*)?:/*@', $t_url) > 0) {
 return ($p_return_absolute ? $t_path . '/' : '') . 'index.php';
}
...

if (0 == $t_type || empty($t_matches['script']) ||
 3 == $t_type && preg_match('@(?:[^:]*)?://@', $t_url) > 0) {
 return ($p_return_absolute ? $t_path . '/' : '') . 'index.php';
}
...

pre-patch

post-patch

a) no subset relationship between reaching conditions

b) no subset relationship between symbolic expressions

Figure 3: Patches that do not meet PSBP.

6.1.2 Results Breakdown

In this part, we break down the results via different steps and

give some statistics and case studies on each step.

Step I Results: SBP Verification and Generation. In this

step, SKYPORT extracts 280 vulnerable sink functions for

155 patches and verifies that 111 patches with 197 sink

functions are backportable. Let us start from describing these

backportable patches and then these that cannot be backported.

First, all 111 patches restrict the input space of 197 sink

functions, i.e., limiting their sink capabilities. Specifically,

94 sink functions have new control-flow constraints (limiting

reaching conditions), 52 sink functions have new data-flow

sanitization (i.e., limiting data-flow expressions), and the rest

51 have both new control-flow constraints and data-flow

sanitization.

Second, here is a breakdown of the rest 44 patches with 83

sink functions.

• 8 patches fail on PSBP-a. Figure 3 (a) gives an example to

illustrate such patches. Specifically, the pre-patch version

adopts a regular expression “@(?:[ˆ:]*)?://@” in the

condition check of a branch statement opposed to another

regular expression “@(?:[ˆ:]*)?:/*@” in the post-patch

version. That is, there are no subset relations between the

reaching conditions of the two versions.

• 35 patches fail on PSBP-b. Figure 3 (b) illustrates

such an example that fails on PSBP-b. Specifically, one

variable, i.e., $_SERVER[“REQUEST_URL”], in the sink

function echo of the pre-patch version is replaced with

$this->createUrl(“admin/globalsetting/sa”) in

the post-patch version. Therefore, there are no subset

relations between data-flow expressions of the pre-patch

and post-patch versions.

• 1 patch fails on PSBP-c. In this patch, there exists a

database read operation query() in the data-flow expres-

sion of critical parameters. Since it is difficult to judge

whether the results of the two executions are consistent,

a) Official Patch for CVE-2015-5078 on LimeSurvey
2.06_plus_150612

1
2
3
4
5
6

7
8
9

10
11
12
13
14
15

 <?php
 $utquery = "UPDATE {{tokens_$surveyid}}\n";
 if (isTokenCompletedDatestamped($thissurvey)) {
 if (isset($usesleft) && $usesleft <= 1) {
 $utquery.="SET usesleft=usesleft-1, completed='$submitdate'\n";
 $utquery .= "SET usesleft=usesleft-1, completed=" .
 dbQuoteAll($submitdate);
 } else {
 $utquery .= "SET usesleft=usesleft-1\n";
 }
 } else {
 ...
 }
 $utquery .= "WHERE token=" . dbQuoteAll($_POST['token']);
 $utresult = dbExecuteAssoc($utquery);
 ?>

+
-

b) LimeSurvey 2.00_plus_121002

 <?php
 $utquery = "UPDATE {{tokens_$surveyid}}\n";
 if (isTokenCompletedDatestamped($thissurvey)) {
 if (isset($usesleft) && $usesleft <= 1) {
 $utquery.="SET usesleft=usesleft-1, completed='$submitdate'\n";
 } else {
 $utquery .= "SET usesleft=usesleft-1\n";
 }
 } else {
 ...
 }
 $utquery .= "WHERE token='" . $_POST['token'] . "'";
 $utresult = dbExecuteAssoc($utquery);
 ?>

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Figure 4: A case that violates PSBV -b.

SKYPORT conservatively recognizes this operation as non-

deterministic.

Step II Results: SBV Verification. In this part, SKYPORT

verifies that 750 out of 1,137 versions are SBVs. Now let us

describe why the rest versions are not backportable and break

the reasons down.

• 13 versions without the same sink function as the patch.
There are two major reasons: i) the sink functions

are introduced at higher versions when implementing

new functionalities, and ii) lower versions use other

functions that are similar to the sink function. For example,

the sink function for the patch of CVE-2017-5608 in

Piwigo is single_insert(), while version 2.2.2 uses

mass_insert() instead. These two sink functions have

different though similar semantics.

• 263 versions violating PSBV -a. We consider CVE-2016-

10083 of Piwigo as an example. The pre-patch version, i.e.,

Piwigo 2.8.3, and an older version have different control-

flow constraints in an if statement. Specifically, the regular

expression is /^[\w-]+$/ in the pre-patch version as

opposed to /^\w+$/ in the older version.

• 111 version violating PSBV -b. Taking Figure 4 as an exam-

ple, the pre-patch version sanitizes $_POST[’token’] at

Line 13 in (a), while the target, old version in (b) does not,

which violates PSBV -b.

Table 6: Patch Result Comparison for 1,526 Target Versions

among Auto-upgrade, Direct Patch, and SKYPORT.

Direct patch Strict upgrade Lazy upgrade SKYPORT

Success 455 39 149 750

Failure 1,071 1,487 1,377 776

Step III Results: Patch Deployment (SBP→SBV).
SKYPORT successfully deploys all 98 SBPs upon 750

affected safely backportable versions. For example, the patch

for CVE-2014-9281 (an XSS vulnerability of MantisBT) is

developed at 1.2.17, while SKYPORT successfully deploys

the generated SBP on the version 1.0.4. There are 38 versions

between these two spanning over 3,009 days.

6.2 Comparison with State of the Art

In this subsection, we compare SKYPORT with three state-of-

the-art approaches in backporting security patches.

• Direct Patch Application. This approach directly applies

the official patch upon the target version using the “patch”
command.

• Strict Auto-upgrade. This approach uses auto-upgrade

APIs provided by the web application framework if the

supported PHP versions between two web application

versions are the same. Note that we use PHPLint [6] to

check PHP version compatibilities of web applications.

• Lazy Auto-upgrade. This approach is a relax of strict auto-

upgrade, which considers an auto-upgrade succeeds if the

PHP version conflicts only exist for test or demo files.

Table 6 shows the overall results among four approaches

including SKYPORT. Clearly, SKYPORT outperforms all

state-of-the-art approaches in fixing vulnerabilities in target

versions of web applications.

6.2.1 Breakdown of Direct Patch Application Failures

In this part, we break down all the failure cases of direct patch

applications.

• Code conflict (1,049 versions). When the target version has

a different patching context to the pre-patch version, the

“patch” command raises a “code conflict” error. Since there

might exist many code changes between the target and the

pre-patch versions, such conflict is very common in direct

patch application.

• No such file or directory (5 versions). When files modified

by the official patch do not exist in the target version, a “no
such file or directory” error is reported. It is worth noting

that none of these files are relevant to the vulnerability fix.

Therefore, our approach does not meet these problems.

• Reversed patch detected (17 versions). In some scenarios,

the code lines modified by the patch are the same as the

ones in the post-patch version, which will raise a “reversed
patch detected” error.

Table 7: Performance (Seconds) of SKYPORT Broken-down

by Different Modules in Average, Medium and Medium

Absolute Deviation (MAD).

SKYPORT Module Average Medium MAD

Patch Affection Analysis 666.49s 40.28s 44.92s

Sink Capability Extraction for SBP 695.32s 72.00s 88.96s

Sink Capability Extraction for SBV 4,064.82s 527.50s 715.36s

Backportable Analysis 129.09s 17.00s 23.72s

Patch Deployment 4.80s 1.00s 0.00s

End-to-end Total 6,459.75s 895.47s 1,181.09s

6.2.2 Breakdown of Auto-upgrade Failures

In this part, we break down all the 1,487 versions that auto-

upgrade failed to backport and fix vulnerabilities.

• Versions without Auto-upgrade APIs (624 versions). Not

all web application frameworks provide auto-upgrade

APIs. In our datasets, five frameworks (Piwigo, WordPress,

LimeSurvey, PrestaShop and MISP) do provide and five do

not, which contribute to 624 target old versions .

• Parsing Errors in Core Files (753 versions). In these

versions, when using PHPLint with required compatible

PHP versions to analyze, PHP parse errors or PHP fa-

tal errors will be reported in some core files, such as

wp-includes/canonical.php of WordPress 5.8.1 in PHP

5.4, or Core/Domain/Currency/ValueObject/
Precision.php of PrestaShop 1.7.8.0 in PHP 7.0.

• Parsing Errors in Non-core Files (108 versions). In these

versions, the PHP errors occur only in non-core files (e.g.,

demo or test files). For example, tools/test_piwigo.php
of Piwigo 11.5.0 in PHP 5.4).

• Parsing Warnings (2 versions). In these versions, only PHP

warnings will appear, which will not affect the normal exe-

cution of the program. For instance, PHP Strict Standards

will be reported, when using PHPLint with PHP 5.6 to ana-

lyze wp-includes/sodium_compat/src/Core/Base64/
Common.php in WordPress 5.8.1.

6.3 Performance

In this subsection, we evaluate the performance of SKYPORT

and break down the performance by different modules of

SKYPORT in Table 7. First, both Patch Affection Analysis and

Sink Capability Extraction modules are heavyweight, because

they rely on static analysis to follow each sink path, collect

reaching conditions and generate data-flow expressions. Note

that Sink Capability Extraction for SBP is faster than the one

for SBV, because our Patch Affection Analysis filters many

irrelevant sink functions and the number of analyzed sinks for

SBP is much smaller than SBV. Second, Backportable Analysis

and Patch Deployment modules are relatively lightweight.

Backportable Analysis mainly relies on the analysis of

boolean operations and Patch Deployment on locating and

replacing PHP code.

Table 8: Breakdown of Test Cases Generated by Each Method

in the Functionality Test (x in x/y means the number of test

cases triggering SBP modified code and y in x/y means the

total number of generated test cases).

App CVE-ID Version Breakdown (# of SBP-related / # of Total)
Tutotrial Crawlers Monkey Scanner Manual

L
im

eS
u
rv

ey CVE-2020-11456
4.0.0 11 / 1,182 1 / 599 0 / 543 0 / 823 6 / 6

4.0.1 11 / 1,182 1 / 488 0 / 1,425 0 / 1,389 6 / 6

CVE-2020-25798
3.1.0 2 / 1,037 0 / 1,470 0 / 11,853 0 / 936 6 / 6

3.14.4 2 / 1,067 0 / 1,609 0 / 4,947 0 / 551 6 / 6

O
p
en

E
M

R

CVE-2018-10571

5.0.0 2 / 973 4 / 1,198 0 / 1,178 0 / 482 6 / 6

5.0.0.5 2 / 979 2 / 1,190 0 / 1,370 0 / 1,607 6 / 6

4.1.1 2 / 912 1 / 616 0 / 596 0 / 368 6 / 6

CVE-2018-10572

5.0.0 3 / 826 1 / 1,125 0 / 1,291 0 / 1,136 6 / 6

5.0.0.5 3 / 854 2 / 925 0 / 493 0 / 372 6 / 6

4.1.1 3 / 819 2 / 1,031 0 / 579 0 / 295 6 / 6

CVE-2018-15139

5.0.0 2 / 812 2 / 1,188 0 / 1,341 0 / 273 6 / 6

5.0.0.5 2 / 821 0 / 708 0 / 1,381 0 / 871 6 / 6

4.2.0.3 2 / 943 1 / 1,335 1 / 728 0 / 486 6 / 6

M
an

ti
sB

T

CVE-2017-12061
1.3.10 1 / 873 0 / 328 0 / 1,622 0 / 341 4 / 4

2.5.0 1 / 895 0 / 215 0 / 606 0 / 672 4 / 4

CVE-2017-12062
2.2.4 4 / 1,006 0 / 194 58 / 1,483 0 / 1,536 4 / 4

2.5.0 4 / 991 48 / 433 0 / 407 0 / 688 4 / 4

CVE-2014-9281
1.2.10 1 / 556 0 / 252 0 / 868 0 / 292 4 / 4

1.0.4 2 / 615 0 / 262 0 / 1,785 0 / 286 4 / 4

CVE-2014-9270
1.2.9 8 / 486 0 / 283 0 / 467 0 / 329 4 / 4

1.2.15 7 / 520 0 / 299 0 / 473 0 / 320 4 / 4

P
iw

ig
o

CVE-2017-10682

2.9.0 3 / 247 0 / 2,285 0 / 6,240 0 / 588 3 / 3

2.6.5 3 / 215 0 / 1,494 0 / 246 0 / 331 3 / 3

2.4.5 3 / 283 4 / 1,323 0 / 1,482 0 / 304 3 / 3

CVE-2017-17824

2.9.0 1 / 247 0 / 1,241 1 / 3,698 0 / 404 3 / 3

2.6.5 1 / 215 1 / 758 0 / 645 0 / 330 3 / 3

2.4.5 1 / 315 1 / 440 0 / 1,935 0 / 334 3 / 3

7 SKYPORT-patched Web App Evaluation

In this section, we evaluate SKYPORT-patched web apps.

Because the evaluation involves manual works, such as real

web application environment setup and attack input collection,

our evaluation is based upon a subset of web applications

patched by SKYPORT. Our criterion is to select vulnerabilities

with exploits and then those belonging to the top four web

frameworks. In total, we select 11 patches and 27 versions

as shown in Table 10. All the experiments in this section are

performed on a Linux machine with 2 Intel Xeon E7-4820

processors and 378 GB RAM. The evaluation answers the

following three Research Questions (RQs):

• RQ1 [Security]: Can SKYPORT-patched web applications

prevent attacks against the patch-targeted vulnerability?

• RQ2 [Functionality]: Are SKYPORT-patched web applica-

tions still functioning correctly as they do before patching?

• RQ3 [Performance]: What is the performance overhead

introduced by SKYPORT on the target version comparing

with the official patch on the pre-patch version?

An overview of the answers to all three questions can be

found in Table 10. We also describe them in detail below.

Table 9: Breakdown of 1% Sampling of Test Cases Generated

by Each Method in the Functionality Test (x in x/y means

the number of sampled test cases and y in x/y means the

total number of generated test cases that do not trigger SBP
modified code).

App CVE-ID Version Breakdown (# of 1% sampling / # of Total)
Tutotrial Crawlers Monkey Scanner

L
im

eS
u
rv

ey CVE-2020-11456
4.0.0 12 / 1,171 6 / 598 5 / 543 8 / 823

4.0.1 11 / 1,171 6 / 487 14 / 1,425 14 / 1,389

CVE-2020-25798
3.1.0 10 / 1,035 14 / 1,470 121 / 11,853 9 / 936

3.14.4 10 / 1,065 16 / 1,609 49 / 4,947 5 / 551

O
p
en

E
M

R

CVE-2018-10571

5.0.0 9 / 971 12 / 1,194 12 / 1,178 5 / 482

5.0.0.5 10 / 977 12 / 1,188 13 / 1,370 16 / 1,607

4.1.1 9 / 910 6 / 615 6 / 596 3 / 368

CVE-2018-10572

5.0.0 8 / 823 11 / 1,124 12 / 1,291 11 / 1,136

5.0.0.5 8 / 851 9 / 923 5 / 493 3 / 372

4.1.1 8 / 816 10 / 1,029 6 / 579 3 / 295

CVE-2018-15139

5.0.0 8 / 810 12 / 1,186 13 / 1,341 3 / 273

5.0.0.5 8 / 819 7 / 708 15 / 1,381 9 / 871

4.2.0.3 9 / 941 13 / 1,334 7 / 727 5 / 486

M
an

ti
sB

T

CVE-2017-12061
1.3.10 8 / 872 3 / 328 16 / 1,622 3 / 341

2.5.0 9 / 894 2 / 215 6 / 606 7 / 672

CVE-2017-12062
2.2.4 10 / 1,002 2 / 194 15 / 1,425 15 / 1,536

2.5.0 10 / 987 4 / 385 4 / 407 7 / 688

CVE-2014-9281
1.2.10 6 / 555 2 / 252 9 / 868 3 / 292

1.0.4 6 / 613 3 / 262 20 / 1,785 3 / 286

CVE-2014-9270
1.2.9 5 / 478 3 / 283 5 / 467 3 / 329

1.2.15 5 / 513 3 / 299 5 / 473 3 / 320

P
iw

ig
o

CVE-2017-10682

2.9.0 2 / 244 24 / 2,285 64 / 6,240 6 / 588

2.6.5 2 / 212 16 / 1,494 2 / 246 3 / 331

2.4.5 3 / 280 13 / 1,319 15 / 1,482 3 / 304

CVE-2017-17824

2.9.0 2 / 246 13 / 1,241 38 / 3,697 4 / 404

2.6.5 2 / 214 8 / 757 6 / 645 3 / 330

2.4.5 3 / 314 4 / 439 19 / 1,935 3 / 334

7.1 RQ1: Security

In this Research Question, we evaluate the security of

SKYPORT-patched web applications, i.e., whether they are

still vulnerable to attacks targeting the original vulnerability.

Our methodology is as follows. We collect exploits targeting

these CVEs in Table 10 from online locations, e.g., the CVE

database, and then verify the effectiveness of these exploits by

testing them on the pre-patch and target versions. If an exploit

can attack the pre-patch and the history versions, we also

apply it on the SKYPORT-patched versions. The “Security

Test Pass Ratio” in Table 10 shows the results, i.e., SKYPORT-

patched web applications can defend against the original

exploit according to our evaluation.

7.2 RQ2: Functionality

In this Research Question, we evaluate the functionalities of

SKYPORT-patched web applications. Here are how we collect

test cases for SKYPORT-patched web applications. First, we

follow prior work [11] to collect test cases via tutorials, spider,

monkey testing and vulnerability scanner. Second, we also

read CVE descriptions and manually construct test cases that

can trigger the vulnerable sink on SKYPORT-patched web

applications. Third, from the previous two steps, we generate

two sets of our own test cases:

Table 10: Evaluation Results of the Safely Backportable Patch in its Security, Functionality and Performance.

Application CVE-ID Pre-patched
Version

Test Target
Versions

Security Test
Pass Ratio

Functionality Test Pass Ratio Performance Overhead

SBP-related 1% sampling Normal Input (O/S)1,2 Attack Input (O/S)1,2

LimeSurvey
CVE-2020-11456 4.1.11 4.0.0, 4.0.1 2 / 2 36 / 36 76 / 76 18.65%/21.78% 7.26%/12.51%
CVE-2020-25798 3.21.1 3.14.4, 3.1.0 2 / 2 16 / 16 234 / 234 5.41%/7.66% 6.91%/12.72%

OpenEMR
CVE-2018-10571 5.0.0.6 5.0.0, 5.0.0.5, 4.1.1 3 / 3 31 / 31 113 / 113 7.71%/11.94% 7.42%/8.23%
CVE-2018-10572 5.0.0.6 5.0.0, 5.0.0.5, 4.1.1 3 / 3 32 / 32 94 / 94 1.86%/2.69% 0.99%/1.58%
CVE-2018-15139 5.0.1.3 5.0.0, 5.0.0.5, 4.2.0.3 3 / 3 28 / 28 109 / 109 2.23%/3.40% -3.86%/-2.66%

MantisBT

CVE-2017-12061 1.3.11 1.3.10, 2.5.0 2 / 2 10 / 10 54 / 54 3.46%/9.31% 11.31%/17.23%
CVE-2017-12062 2.5.1 2.2.4, 2.5.0 2 / 2 122 / 122 67 / 67 0.29%/0.82% 1.86%/4.80%
CVE-2014-9281 1.2.17 1.2.10, 1.0.4 2 / 2 11 / 11 52 / 52 10.47%/22.65% 5.48%/13.32%

CVE-2014-9270 3 1.2.17 1.2.15, 1.2.9 2 / 2 23 / 23 32 / 32 2.93%/4.62% 6.55%/12.58%

Piwigo
CVE-2017-10682 2.9.1 2.9.0, 2.6.5, 2.4.5 3 / 3 22 / 22 153 / 153 6.13%/10.95% -49.57%/-48.10%
CVE-2017-17824 2.9.2 2.9.0, 2.6.5, 2.4.5 3 / 3 15 / 15 105 / 105 2.43%/3.20% -97.39%/-97.14%

Total 11 11 27 27 / 27 346 / 346 1,089 / 1,089 - -

1 O(fficial Patch) = the overhead that is introduce by the official patch on the pre-patched version.
2 S(afely Backportable Patch) = the overhead that is introduced by the SBP on the pre-patched version.
3 The SBP generated by SKYPORT involves a loop statement.

• SBP-related Test Cases. We run all the collected test cases

and record a test case if it triggers the SBP. A breakdown of

this set of test cases is shown in Table 8. Interestingly, SBP
modifications and the vulnerability are often very hard to

trigger, i.e., only a small number of test cases can trigger

them. This is understandable: When a vulnerability is a

corner case, it makes the vulnerability harder to discover.

• 1% Sampling of Collected Test Cases. We randomly select

1% of test cases (which do not trigger the SBP) in each

collection methods. A brekdown of this 1% sampling

dataset is shown in Table 9.

Next, we feed our two sets of the test cases into the

SKYPORT-patched versions and record the requests in terms

of external and global variables. We have to replay the

requests in terms of external and global variables to avoid

non-determinism. Then, we replay these recorded requests

in the target version and determine whether both responses

(including HTTP responses, databases, and other external

requests if they exist) are consistent.

Note that we sample 1% of total collected test cases,

because many CMSes have deployed anti-replay techniques

(e.g., the adoption of random tokens) and the reply involves

external and global variables. Thus, our replay involves much

manual work and a full test of the entire collected cases is not

scalable given the amount of human work.

Single Patch Results. In this part, we only patch a target

version with a single SBP and evaluate the functionality. The

“Functionality Test Pass Ratio” column in Table 10 shows the

evaluation results for both the SBP-related and 1% sampling

test cases. The responses for all the test cases are the same

between SKYPORT-patched and target versions no matter the

test cases trigger the SBP or not.

Multiple Patch Results. In this part, we patch a target

version with multiple SBPs and evaluate its functionality. The

“CVEs Patched via SKYPORT” column in both Table 11 and

Table 12 shows the sequence of CVEs and corresponding

SBPs that SKYPORT generates. For each target version,

SKYPORT applies all the SBPs in sequence and then tests

SKYPORT-patched version’s functionality. The “Test Case

Breakdown” in both tables shows a breakdown of all the test

cases and the results are in the “Test Pass Ratio” column.

SKYPORT preserves web applications’ functionalities even

when multiple patches are backported and deployed on a

target version.

7.3 RQ3: Performance

In this Research Question, we evaluate the performance over-

head of SKYPORT-patched web applications. We measure

the execution time of the vulnerable logic in both the pre-

patch and target versions and the time of the safe logic in

both post-patch and SKYPORT-patched versions with both

normal and attack test cases. Then, we calculate and compare

both performance overheads of the original patch and SBP.

Specifically, we instrument the source file with the sink to

calculate the gap between the load time of the file and the

finish time of the sink or the exit time of the current file, and

use this time gap as the execution time. Each execution time

is calculated as the average of the time in 1,000 tests.

Table 7 shows that SBPs usually introduce a little higher

overhead than the official patches. This is because SBPs re-

execute the code from the function/file entry-point to the

sink function to enforce the extracted patch semantics. We

also observe that, under some malicious test cases, both the

official patches and the SBPs introduce negative overhead.

After a further investigation, we find that the patch semantics

abort the current execution while the pre-patched version

needs to finish the sink function execution. As a summary,

our SBPs introduce negligible overhead when comparing with

the official patches.

8 Discussion
In this section, we discuss the limitations of our approach,

including some future work.

Table 11: Functionality Evaluation with Multiple SBPs Deployed on an SBV (SBP-related test cases).

Application Version CVEs Patched via SKYPORT
Test Case Breakdown (# of SBP-related / # of Total)

Test Pass Ratio
Tutorial Crawlers Monkey Scanner Manual

OpenEMR

5.0.0 CVE-2018-10571, CVE-2018-10572, CVE-2018-15139 7 / 816 2 / 1,174 0 / 1,270 0 / 602 18 / 18 27 / 27

5.0.0.5 CVE-2018-10571, CVE-2018-10572, CVE-2018-15139 7 / 865 2 / 950 0 / 1,102 0 / 935 18 / 18 27 / 27

4.1.1 CVE-2018-10571, CVE-2018-10572 5 / 863 1 / 809 0 / 583 0 / 327 12 / 12 18 / 18

MantisBT 2.5.0 CVE-2017-12061, CVE-2017-12062 5 / 901 48 / 340 0 / 506 0 / 674 8 / 8 61 / 61

Piwigo

2.9.0 CVE-2017-10682, CVE-2017-17824 4 / 297 0 / 1,735 1 / 5,013 0 / 496 6 / 6 11 / 11

2.6.5 CVE-2017-10682, CVE-2017-17824 4 / 244 1 / 1,104 0 / 447 0 / 339 6 / 6 11 / 11

2.4.5 CVE-2017-10682, CVE-2017-17824 4 / 300 2 / 890 0 / 1,721 0 / 320 6 / 6 12 / 12

Table 12: Functionality Evaluation with Multiple SBPs Deployed on an SBV (1% sampling of non SBP-related test cases).

Application Version CVEs Patched via SKYPORT
Test Case Breakdown (# of 1% sampling / # of Total)

Test Pass Ratio
Tutorial Crawlers Monkey Scanner

OpenEMR

5.0.0 CVE-2018-10571, CVE-2018-10572, CVE-2018-15139 8 / 809 11 / 1,172 13 / 1,270 6 / 602 38 / 38

5.0.0.5 CVE-2018-10571, CVE-2018-10572, CVE-2018-15139 9 / 858 10 / 948 11 / 1,102 9 / 935 39 / 39

4.1.1 CVE-2018-10571, CVE-2018-10572 9 / 858 8 / 808 5 / 583 3 / 327 25 / 25

MantisBT 2.5.0 CVE-2017-12061, CVE-2017-12062 9 / 896 3 / 292 5 / 506 7 / 674 24 / 24

Piwigo

2.9.0 CVE-2017-10682, CVE-2017-17824 3 / 293 18 / 1,735 50 / 5,012 5 / 496 76 / 76

2.6.5 CVE-2017-10682, CVE-2017-17824 2 / 240 11 / 1,103 4 / 447 4 / 339 21 / 21

2.4.5 CVE-2017-10682, CVE-2017-17824 3 / 296 9 / 888 17 / 1721 3 / 320 32 / 32

Sink Capability Comparison. One limitation of our ap-

proach is that our current implementation conservatively

identifies subset relations between two reaching conditions

and data-flow expressions if a string comparison exists.

Although such cases are very rare in practice, they may lead

to false negatives. In the future, we plan to enhance string

solvers [24, 79] and incorporate them into SKYPORT.

SBP Management. Another potential limitation is that

SBPs will lead to more fragmented versions of web appli-

cations, causing potential management issues. Even so, we

would like to note that web application fragmentation is an

existing issue because many website developers add their own

code. More importantly, Table 11 shows that the application

of multiple SBP can still preserve the functionality of web

applications while fixing corresponding vulnerabilities. Mean-

while, as a long-term solution, if upgrade APIs exist for certain

web applications, we still recommend administrators upgrade

web applications to avoid further version fragmentations.

Adaption to non-PHP Web Applications. Our prototype

of SKYPORT is designed for PHP applications; at the same

time, the general approach on backporting security patches is

applicable to other non-PHP (e.g., Node.js and Java) web

applications. For the adaptation, we need to port all four

modules with the static analysis tools in other languages (e.g.,

Soot [70] for Java).

9 Related Work
In this section, we present the most related work to our paper.

Web Application Vulnerability. Web application vulnera-

bilities remain to be one of the major security threats today.

Previous works usually use program analysis tools to detect

web vulnerabilities. Due to the popularity, plenty of works

focus on detecting PHP application vulnerabilities [21, 35,

62, 75], while recently there are also several works that

detect vulnerabilities of Node.js applications [20, 41, 42,

54, 63] and Java applications [46, 52, 60]. To analyze PHP

applications, Backes et al. designed the PHPJoern [12] tool

which borrows the concept of the code property graph [77] to

PHP code analysis. Based on PHPJoern, Alhuzali et al. [9,10]

proposed the navigation graph to model relationships among

several HTTP requests, which help to detect inter-request

vulnerabilities.

Though a general vulnerability detection tool (e.g., PH-

PJoern [12], NAVEX [10]) can detect multiple types of

vulnerabilities (e.g., cross-site scripting and SQL injection),

some works mainly focus on detecting a specific type of

vulnerabilities. SQLCIV [71] is designed to detect SQL

injection vulnerabilities, while [22,39] considered the second-

order SQL injection vulnerabilities. To detect file upload

vulnerabilities, UChecker [30] uses symbolic execution and

features a vulnerability-oriented locality analysis to reduce

the workload of symbolic execution, while FUSE [40] uses

fuzzing techniques to mutate normal upload requests and

bypass content-filter checks. Dahse et al. [23] presented an

automatic technique to detect and exploit PHP object injection

(POI) vulnerabilities by chaining code gadgets.

Compared with the vulnerabilities that have explicit sink

functions (e.g., XSS [17] and SQLi), logic flaws are more

difficult to detect. Existing works mine behavioral specifica-

tions [28] or behavioral patterns [58] from normal operations

and network traces to detect common logic flaws in web

applications. Besides, Sun et al. [68] used invariant analysis

to detect the specific payment logic flaws in e-commerce web

applications. Access control vulnerability is a traditional logic

flaw for websites. Sun et al. [67] proposed inferring privileged

pages from per-role sitemaps and identifying missed access

controls before these pages, while MACE [53] identifies

privilege escalation vulnerabilities through authorization

state inconsistency checking. To detects cross-site request

forgery (CSRF) vulnerabilities, Deemon [59] models the

execution traces, data-flows, and architecture tiers in a unified,

comprehensive property graph and detects such vulnerabilities

by querying the graph. Execution After Redirect (EAR)

vulnerability is a new logic flaw discovered by Doupé et
al. [25] and Payet et al. [57] further performed a large-scale

measurement of EAR vulnerabilities in the real world.

Given so many researches on detecting web vulnerabilities,

it is quite important to mitigate and prevent web vulnerabili-

ties [14–16]. Diglossia [61] prevents code injection attacks

with precision and efficiency, and SQLBlock [32] mitigates

SQL injection on legacy web applications. To mitigate XSS

vulnerabilities, Content Security Policy (CSP) [13, 55, 64, 72]

is proposed. Debloating is also used to reduce the attack

surface of Node.js applications [38] and PHP applications [8,

11]. Although these techniques are effective in mitigating web

vulnerabilities, their scopes are limited.

Security Patches. Security patches are quite important in

fighting against vulnerabilities. However, patch development

is quite difficult and usually requires a lot of manual efforts.

Existing works propose several techniques to automatically

generating patches for vulnerabilities. First, security patches

are generated by learning from human-written patches [47,49].

However, such method fails to fix the vulnerability sometimes

because it can only approximate the properties that are

necessary to prevent the vulnerability. Second, pre-defined

safe properties and exploit inputs are used to generate security

patches by understanding the root cause of a vulnerability [31].

Besides, search-based patch generation could infer a correct

patch from many normal test cases [36, 48, 73]. Due to the

requirement on qualified inputs, the above method is hard to

apply to patch backporting. In addition to the difficulties in

developing patches, deploying patches is also quite difficult.

To reduce the testing efforts when deploying patches, Machiry

et al. [50] proposed a safe patch identification approach which

could ease the propagation of some patches. Besides, hot-

patches and hot-patching frameworks [18,56,76] are proposed

to directly fix the vulnerability without requiring users to

explicitly updating their software. However, these works

usually assume they have the correct corresponding patches

for the target software, which does not fit the assumption of

patch backporting.

10 Conclusion
Vulnerable web applications are often left unpatched because

the version targeted by the patch may be different from the

one running in real-world websites. The problem of applying

a security patch to an older version of web application

is called security patch backporting. The general problem

of backporting is hard because it is challenging to model

vulnerable and safe logic across various application versions.

In this paper, we focus on injection vulnerabilities with

explicit sinks and model vulnerable logic as a new concept

called sink capability. A sink capability contains all the

control-flow constraints (called reaching conditions) and

the symbolic expression of the critical parameter of the

sink function (called data-flow expressions) of all control-

flows leading to the sink. We implemented a prototype of

security patch backporting on injection vulnerabilities, called

SKYPORT, and evaluated it on a dataset of 155 security

patches and 1,526 target old versions. Our evaluation shows

that SKYPORT outperforms the state-of-the-art, i.e., direct

application of the security patch and web application upgrade

to the safe version.

Acknowledgement
We would like to thank our shepherd, Giancarlo Pellegrino,

and the anonymous reviewers for their helpful comments and

feedback. This work was supported in part by the National

Natural Science Foundation of China (U1836210, U1836213,

62172105, 61972099, 62172104, 62102091, 62102093), Nat-

ural Science Foundation of Shanghai (19ZR1404800). Yuan

Zhang was supported in part by the Shanghai Rising-Star

Program 21QA1400700 and the Shanghai Pilot Program for

Basic Research-Fudan University 21TQ1400100 (21TQ012).

Yinzhi Cao was supported in part by National Science

Foundation (NSF) under grants CNS-20-46361 and CNS-

18-54001 and Defense Advanced Research Projects Agency

(DARPA) under AFRL Definitive Contract FA875019C0006.

The views and conclusions contained herein are those of

the authors and should not be interpreted as necessarily

representing the official policies or endorsements, either

expressed or implied, of NSF or DARPA. Min Yang is the

corresponding author, and a faculty of Shanghai Institute

of Intelligent Electronics & Systems, Shanghai Institute for

Advanced Communication and Data Science, and Engineering

Research Center of CyberSecurity Auditing and Monitoring,

Ministry of Education, China.

References
[1] CVE Details Website. https://cve.mitre.org.

[2] Drupalgeddon 2.0 Still Haunting 115K+ Sites.

https://threatpost.com/drupalgeddon-2-0-s
till-haunting-115k-sites/132518/.

[3] National Vulnerability Database. https://nvd.nist
.gov/.

[4] Neo4j Graph Platform. https://neo4j.com/.

[5] Open EMR. https://www.open-emr.org/.

[6] Salsi, U. PHPLint Reference Manual. http://www.ic
osaedro.it/phplint/manual.html.

[7] WolframScript Website. https://www.wolfram.co
m/wolframscript/.

[8] R. J. Alexander Bulekov and M. Egele. Saphire:

Sandboxing PHP Applications with Tailored System

Call Allowlists. In Proceedings of the 30th USENIX
Security Symposium (USENIX Security), 2021.

[9] A. Alhuzali, B. Eshete, R. Gjomemo, and V. Venkatakr-

ishnan. Chainsaw: Chained Automated Workflow-based

Exploit Generation. In Proceedings of the 23rd ACM
SIGSAC Conference on Computer and Communications
Security (CCS), pages 641–652, 2016.

[10] A. Alhuzali, R. Gjomemo, B. Eshete, and V. Venkatakr-

ishnan. NAVEX: Precise and Scalable Exploit

Generation for Dynamic Web Applications. In

Proceedings of the 27th USENIX Security Symposium
(USENIX Security), pages 377–392, 2018.

[11] B. A. Azad, P. Laperdrix, and N. Nikiforakis. Less is

More: Quantifying the Security Benefits of Debloating

Web Applications. In Proceedings of the 28th USENIX
Security Symposium (USENIX Security), 2019.

[12] M. Backes, K. Rieck, M. Skoruppa, B. Stock, and

F. Yamaguchi. Efficient and Flexible Discovery of PHP

Application Vulnerabilities. In Proceedings of the 2nd
IEEE European Symposium on Security and Privacy
(EuroS&P), pages 334–349. IEEE, 2017.

[13] S. Calzavara, A. Rabitti, and M. Bugliesi. Content

Security Problems? Evaluating the Effectiveness of

Content Security Policy in the Wild. In Proceedings of
the 23rd ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2016.

[14] Y. Cao, Z. Li, V. Rastogi, Y. Chen, and X. Wen. Virtual

browser: a virtualized browser to sandbox third-party

javascripts with enhanced security. In Proceedings of
the 7th ACM Symposium on Information, Computer and
Communications Security, pages 8–9, 2012.

[15] Y. Cao, V. Rastogi, Z. Li, Y. Chen, and A. Moshchuk.

Redefining web browser principals with a configurable

origin policy. In 2013 43rd Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks (DSN), pages 1–12. IEEE, 2013.

[16] Y. Cao, Y. Shoshitaishvili, K. Borgolte, C. Kruegel,

G. Vigna, and Y. Chen. Protecting web-based single

sign-on protocols against relying party impersonation

attacks through a dedicated bi-directional authenticated

secure channel. In International Workshop on
Recent Advances in Intrusion Detection, pages 276–298.

Springer, 2014.

[17] Y. Cao, V. Yegneswaran, P. A. Porras, and Y. Chen.

Pathcutter: Severing the self-propagation path of xss

javascript worms in social web networks. In NDSS,

2012.

[18] Y. Chen, Y. Li, L. Lu, Y.-H. Lin, H. Vijayakumar,

Z. Wang, and X. Ou. InstaGuard: Instantly Deployable

Hot-patches for Vulnerable System Programs on

Android. In Proceedings of the 25th ISOC Network
and Distributed System Security Symposium (NDSS).

[19] Y. Chen, Y. Zhang, Z. Wang, L. Xia, C. Bao, and T. Wei.

Adaptive Android Kernel Live Patching. In Proceedings
of the 26th USENIX Security Symposium (USENIX
Security), 2017.

[20] B. Chinthanet, S. E. Ponta, H. Plate, A. Sabetta,

R. G. Kula, T. Ishio, and K. Matsumoto. Code-

based Vulnerability Detection in Node.js Applications:

How Far Are We? In Proceedings of the 35th
IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 1199–1203, 2020.

[21] J. Dahse and T. Holz. Simulation of Built-in

PHP Features for Precise Static Code Analysis. In

Proceedings of the 21tth ISOC Network and Distributed
System Security Symposium (NDSS), pages 23–26, 2014.

[22] J. Dahse and T. Holz. Static Detection of Second-order

Vulnerabilities in Web Applications. In Proceedings
of the 23rd USENIX Security Symposium (USENIX
Security), pages 989–1003, 2014.

[23] J. Dahse, N. Krein, and T. Holz. Code Reuse Attacks

in PHP: Automated POP Chain Generation. In

Proceedings of the 21st ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2014.

[24] L. De Moura and N. Bjørner. Z3: An Efficient SMT

Solver. In Proceedings of the 14th International
conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), pages 337–340, 2008.

[25] A. Doupé, B. Boe, C. Kruegel, and G. Vigna. Fear

the EAR: Discovering and Mitigating Execution after

Redirect Vulnerabilities. In Proceedings of the
18th ACM SIGSAC Conference on Computer and
Communications Security (CCS), pages 251–262, 2011.

[26] R. Duan, A. Bijlani, Y. Ji, O. Alrawi, Y. Xiong,

M. Ike, B. Saltaformaggio, and W. Lee. Automating

Patching of Vulnerable Open-source Software Versions

in Application Binaries. In Proceedings of the
26th ISOC Network and Distributed System Security
Symposium (NDSS), 2019.

[27] T. Durieux, Y. Hamadi, and M. Monperrus. Production-

driven Patch Generation. In Proceedings of the 39th
International Conference on Software Engineering: New
Ideas and Emerging Technologies Results Track (ICSE-
NIER), pages 23–26. IEEE, 2017.

[28] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna.

Toward Automated Detection of Logic Vulnerabilities in

Web Applications. In Proceedings of the 19th USENIX
Security Symposium (USENIX Security), 2010.

[29] I. Haller, E. Göktaş, E. Athanasopoulos, G. Portokalidis,

and H. Bos. ShrinkWrap: VTable Protection without

Loose Ends. In Proceedings of the 31st Annual
Computer Security Applications Conference (ACSAC).

[30] J. Huang, Y. Li, J. Zhang, and R. Dai. UChecker:

Automatically Detecting PHP-based Unrestricted File

Upload Vulnerabilities. In Proceedings of the
49th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 2019.

[31] Z. Huang, D. Lie, G. Tan, and T. Jaeger. Using

Safety Properties to Generate Vulnerability Patches. In

Proceedings of the 40th IEEE Symposium on Security
and Privacy (S&P), pages 539–554. IEEE, 2019.

[32] R. Jahanshahi, A. Doupé, and M. Egele. You Shall Not

Pass: Mitigating SQL Injection Attacks on Legacy Web

Applications. In Proceedings of the 15th ACM on Asia
Conference on Computer and Communications Security
(AsiaCCS), 2020.

[33] D. Jang, Z. Tatlock, and S. Lerner. SafeDispatch:

Securing C++ Virtual Calls from Memory Corruption

Attacks. In Proceedings of the 21st ISOC Network and
Distributed System Security Symposium (NDSS), 2014.

[34] J. Jang, A. Agrawal, and D. Brumley. ReDeBug: Finding

Unpatched Uode Clones in Entire OS Distributions. In

Proceedings of the 33rd IEEE Symposium on Security
and Privacy (S&P), pages 48–62. IEEE, 2012.

[35] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A

Static Analysis Tool for Detecting Web Application

Vulnerabilities. In Proceedings of the 27th IEEE
Symposium on Security and Privacy (S&P). IEEE, 2006.

[36] D. Kim, J. Nam, J. Song, and S. Kim. Automatic Patch

Generation Learned from Human-written Patches. In

Proceedings of the 35th International Conference on
Software Engineering (ICSE). IEEE, 2013.

[37] S. Kim, S. Woo, H. Lee, and H. Oh. VUDDY:

A Scalable Approach for Vulnerable Code Clone

Discovery. In Proceedings of the 38th IEEE Symposium
on Security and Privacy (S&P). IEEE, 2017.

[38] I. Koishybayev and A. Kapravelos. Mininode: Reducing

the Attack Surface of Node.js Applications. In

Proceedings of the 23rd International Symposium on
Research in Attacks, Intrusions and Defenses (RAID).

[39] D.-g. Le, X. Li, S.-r. Gong, and L.-x. ZHENG. Research

on Second-order SQL Injection Techniques. Journal on
Communications, 36(Z1):85, 2015.

[40] T. Lee, S. Wi, S. Lee, and S. Son. FUSE: Finding File

Upload Bugs via Penetration Testing. In Proceedings of
the 27th ISOC Network and Distributed System Security
Symposium (NDSS). Network & Distributed System

Security Symposium, 2020.

[41] S. Li, M. Kang, J. Hou, and Y. Cao. Detecting node.js

prototype pollution vulnerabilities via object lookup

analysis. In Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering,

pages 268–279, 2021.

[42] S. Li, M. Kang, J. Hou, and Y. Cao. Mining node.js

vulnerabilities via object dependence graph and query.

In Proceedings of the 31th USENIX Security Symposium
(USENIX Security), 2022.

[43] Y. Li, S. Wang, and T. N. Nguyen. DLfix: Context-based

Code Transformation Learning for Automated Program

Repair. In Proceedings of the 42th International
Conference on Software Engineering (ICSE), 2020.

[44] Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, and J. Hu. VulPecker:

An Automated Vulnerability Detection System based on

Code Similarity Analysis. In Proceedings of the 32nd
Annual Computer Security Applications Conference
(ACSAC), pages 201–213, 2016.

[45] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng,

and Y. Zhong. VulDeePecker: A Deep Learning-based

System For Vulnerability Detection. In Proceedings of
the 25th ISOC Network and Distributed System Security
Symposium (NDSS), 2018.

[46] B. Livshits and M. Lam. Finding Security Vulnera-

bilities in Java Applications with Static Analysis. In

Proceedings of the 14th USENIX Security Symposium
(USENIX Security), 2005.

[47] F. Long, P. Amidon, and M. Rinard. Automatic

Inference of Code Transforms for Patch Generation. In

Proceedings of the 11th Joint Meeting on Foundations
of Software Engineering (FSE), pages 727–739, 2017.

[48] F. Long and M. Rinard. An Analysis of the Search

Spaces for Generate and Validate Patch Generation

Systems. In Proceedings of the 38th International
Conference on Software Engineering (ICSE). IEEE.

[49] F. Long and M. Rinard. Automatic Patch Generation

by Learning Correct Code. In Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), 2016.

[50] A. Machiry, N. Redini, E. Camellini, C. Kruegel, and

G. Vigna. SPIDER: Enabling Fast Patch Propagation in

Related Software Repositories. In Proceedings of the
41th IEEE Symposium on Security and Privacy (S&P).

[51] N. Magnezi and M. Kolesnik. Backporting of Bug

Patches, Mar. 28 2017. US Patent 9,606,793.

[52] H. Man, J. An, W. Huang, and W. Fan. JSEFuzz: Vul-

nerability Detection Method for Java Web Application.

In Proceedings of the 3rd International Conference on
System Reliability and Safety (ICSRS), page 6, 2018.

[53] M. Monshizadeh, P. Naldurg, and V. Venkatakrishnan.

MACE: Detecting Privilege Escalation Vulnerabilities

in Web Applications. In Proceedings of the 21st ACM
SIGSAC Conference on Computer and Communications
Security (CCS), pages 690–701, 2014.

[54] B. Nielsen, B. Hassanshahi, and F. Gauthier. Nodest:

Feedback-driven Static Analysis of Node.js Applica-

tions. In Proceedings of the 27th Joint Meeting on
Foundations of Software Engineering (FSE), 2019.

[55] X. Pan, Y. Cao, S. Liu, Y. Zhou, Y. Chen, and

T. Zhou. CSPAutoGen: Black-box Enforcement of

Content Security Policy upon Real-World Websites. In

Proceedings of the 23rd ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2016.

[56] M. Payer and T. R. Gross. Hot-patching A Web Server:

A Case Study of ASAP Code Repair. In Proceedings
of the 11th Eleventh Annual Conference on Privacy,
Security and Trust (PST), pages 143–150. IEEE, 2013.

[57] P. Payet, A. Doupé, C. Kruegel, and G. Vigna. EARs

in the Wild: Large-scale Analysis of Execution after

Redirect Vulnerabilities. In Proceedings of the 28th
Annual ACM Symposium on Applied Computing (SAC).

[58] G. Pellegrino and D. Balzarotti. Toward Black-Box

Detection of Logic Flaws in Web Applications. In

Proceedings of the 21st ISOC Network and Distributed
System Security Symposium (NDSS), 2014.

[59] G. Pellegrino, M. Johns, S. Koch, M. Backes, and

C. Rossow. Deemon: Detecting CSRF with Dynamic

Analysis and Property Graphs. In Proceedings of

the 24th ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2017.

[60] B. Qu, B. Liang, S. Jiang, and C. Ye. Design of

Automatic Vulnerability Detection System for Web

Application Program. In Proceedings of the 4th IEEE
International Conference on Software Engineering and
Service Science (ICSESS), pages 89–92, 2013.

[61] S. Son, K. McKinley, and V. Shmatikov. Diglossia:

Detecting Code Injection Attacks with Precision and

Efficiency. In Proceedings of the 20th ACM SIGSAC
Conference on Computer and Communications Security
(CCS), pages 1181–1192, 2013.

[62] S. Son and V. Shmatikov. SAFERPHP: Finding

Semantic Vulnerabilities in PHP Applications. In

Proceedings of the ACM SIGPLAN 6th Workshop on
Programming Languages and Analysis for Security
(PLAS), pages 1–13, 2011.

[63] C.-A. Staicu and M. Pradel. Freezing the Web: A

Study of ReDoS Vulnerabilities in Javascript-based Web

Servers. In Proceedings of the 27th USENIX Security
Symposium (USENIX Security), pages 361–376, 2018.

[64] S. Stamm, B. Sterne, and G. Markham. Reining in the

Web with Content Security Policy. In Proceedings of
the 19th International Conference on World Wide Web
(WWW), pages 921–930, 2010.

[65] B. Stock, G. Pellegrino, F. Li, M. Backes, and C. Rossow.

Didn’t You Hear Me?—Towards More Successful Web

Vulnerability Notifications. In Proceedings of the
25th ISOC Network and Distributed System Security
Symposium (NDSS), 2018.

[66] B. Stock, G. Pellegrino, C. Rossow, M. Johns, and

M. Backes. Hey, You Have a Problem: On the Fea-

sibility of Large-scale Web Vulnerability Notification.

In Proceedings of the 25th USENIX Security Symposium
(USENIX Security), pages 1015–1032, 2016.

[67] F. Sun, L. Xu, and Z. Su. Static Detection of Access

Control Vulnerabilities in Web Applications. In

Proceedings of the 18th ISOC Network and Distributed
System Security Symposium (NDSS), 2011.

[68] F. Sun, L. Xu, and Z. Su. Detecting Logic Vulnerabilities

in E-commerce Applications. In Proceedings of the
21st ISOC Network and Distributed System Security
Symposium (NDSS), 2014.

[69] Y. TIAN. Mining Software Repositories for Automatic
Software Bug Management from Bug Triaging to Patch
Backporting. Dissertations and theses collection,

Singapore Management University, 2017.

[70] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam,

and V. Sundaresan. Soot: A Java Bytecode Optimization

Framework. In Proceedings of the Conference of the
Centre for Advanced Studies on Collaborative Research
(CASCON), page 13. 1999.

[71] G. Wassermann and Z. Su. Sound and Precise Analysis

of Web Applications for Injection Vulnerabilities. In

Proceedings of the 28th ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI), pages 32–41, 2007.

[72] L. Weichselbaum, M. Spagnuolo, S. Lekies, and A. Janc.

CSP is Dead, Long Live CSP! On the Insecurity of

Whitelists and the Future of Content Security Policy. In

Proceedings of the 23rd ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2016.

[73] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung.

Context-aware Patch Generation for Better Automated

Program Repair. In Proceedings of the 40th
International Conference on Software Engineering
(ICSE). IEEE, 2018.

[74] Y. Xiao, B. Chen, C. Yu, Z. Xu, Z. Yuan, F. Li, B. Liu,

Y. Liu, W. Huo, and W. Zou. MVP: Detecting

Vulnerabilities using Patch-enhanced Vulnerability

Signatures. In Proceedings of the 29th USENIX Security
Symposium (USENIX Security), pages 1165–1182, 2020.

[75] Y. Xie and A. Aiken. Static Detection of Security

Vulnerabilities in Scripting Languages. In Proceedings
of the 15th USENIX Security Symposium (USENIX
Security), pages 179–192, 2006.

[76] Z. Xu, Y. Zhang, L. Zheng, L. Xia, C. Bao, Z. Wang, and

Y. Liu. Automatic Hot Patch Generation for Android

Kernels. In Proceedings of the 29th USENIX Security
Symposium (USENIX Security), pages 2397–2414, 2020.

[77] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck.

Modeling and Discovering Vulnerabilities with Code

Property Graphs. In Proceedings of the 35th IEEE
Symposium on Security and Privacy (S&P). IEEE, 2014.

[78] C. Zhang, D. Song, S. A. Carr, M. Payer, T. Li, Y. Ding,

and C. Song. VTrust: Regaining Trust on Virtual

Calls. In Proceedings of the 23rd ISOC Network and
Distributed System Security Symposium (NDSS), 2016.

[79] Y. Zheng, X. Zhang, and V. Ganesh. Z3-str: A Z3-

based String Solver for Web Application Analysis. In

Proceedings of the 9th Joint Meeting on Foundations of
Software Engineering (FSE), pages 114–124, 2013.

